Log In
Login to Phoenix LiDar System

ResourceType

Rail LiDAR Case Study - Custom 3D Mapping Solutions for Rail Corridor
Rail LiDAR Case Study

Application

The transportation side of CSX moves multi-million dollar equipment, from oversized generators to military equipment. To ensure the expensive cargo arrives safely to its destination, CSX first scans the planned route to extract cross-sections of bridges, tunnels, and other overhead obstructions from the LiDAR in order to identify clearance hazards prior to transport.

Results

CSX now owns and operates seven Phoenix LiDAR systems. (4) SCOUT-16 systems mounted on high-rail trucks with Ladybug cameras and (3) SCOUT-32 systems permanently installed on the backs of rolling rail cars. The high-rail trucks can travel on both road and railroad with this flexibility enabling them to go anywhere at any time to support immediate business requests. The rail-based geometry cars are designated to travel and cover the entire 21,000+ mile network at least one time per year as part of their safety protection protocol, with LiDAR continuously collecting data.

Parameters

Site: Rail Corridor
Solution: SCOUT-16 & SCOUT-32
AGL: 4 m
Ground Speed: 25-40 mph
Point Density: 800+ ppsm

Download
HALO 15H Temple Texas, Colorized

Speed: 56 mph
Point density: > 110 points/m²
AGL: 275 m

Download
Halo-15H I-35 Corridor

Speed: 56 mph
Point density: > 90 points/m²
AGL: 350 m

Download
RANGER-UAV FLEX | DUAL MOBILE RFM2

Speed: 20-30 mph
Point density: >2000 points/m²
AGL: Ground level
Acquisition time: 1.5 hrs

Download
RANGER Flex quick start guide
RANGER Flex LED Quick Start Guide

Ensure your LiDAR system is ready for field operations with our comprehensive RANGER Flex LED Quick Start Guide. Download now to streamline setup and maximize performance.

Download
Enhanced Surf Zone and Wave Runup Observations with Hovering Drone-Mounted LiDAR
Enhanced Surf Zone and Wave Runup Observations with Hovering Drone-Mounted LiDAR

In this whitepaper, we explore the innovative application of a hovering drone-mounted LiDAR system paired with a survey-grade satellite and inertial positioning system to measure wave transformation and runup in the surf zone. Unlike traditional methods, the multi-rotor small uncrewed aircraft system (sUAS) offers unobstructed measurements by hovering above the surf zone at a 20-meter elevation, scanning a 150-meter-wide cross-shore transect.

This approach allows rapid and precise data collection in remote locations where terrestrial scanning is challenging. Our study demonstrates that hovering drone-mounted LiDAR provides measurement accuracy almost equivalent to a stationary truck-mounted terrestrial LiDAR. By conducting observations in various surf conditions and validating with traditional land-based surveys and pressure sensors, we achieved a stable back beach topography estimate.

We also calculated statistical wave properties, runup values, and bathymetry inversions using a simple nonlinear correction to wave crest phase speed. This method shows the potential of drone-based LiDAR for accurate nearshore process observations, enabling data collection in previously inaccessible sites and providing valuable validation for coastal models.

Download
HydroRANGER | Canyon Lake

AGL: 90 m
PRR: 50 kHz
Depth Measured: 5 m

Download
RECON-XT SLAM | Building Mapping inside and out

Speed: Walking pace for SLAM. 6 m/s UAV flight
Point density: thousands of points/m²
AGL: 80 during UAV flight
Acquisition time: ~2 hours

Download
Ranger-UAV | A7R4-Lite

Speed: 6 m/s
Point Density: 200 points/m² per flight line
AGL: 120 m
Acquisition time: 10 minutes

Download