

The RANGER-UAV²² FLEX is our most versatile system, capable of seamlessly integrating into various platforms such as backpacks, UAVs, and Dual Scanner Mobile Mapping setups. The high pulse rate measurement capability ensures exceptional precision in data collection. Whether you're embarking on high-density UAS missions, tackling detailed mobile mapping projects, or conducting surveys with low-altitude piloted aircraft, the RANGER-UAV²² FLEX is up to the task.

FEATURES

- A 360° scanner FOV creates a payload designed for flexible mounting options for Backpack, UAV, and Mobile
- Class leading 10 mm range measurement accuracy
- Removable 61 MP RGB camera for UAV applications optional
- Grows with your needs Single RANGER FLEX unit can be installed in dual scanner mobile accessory

QUICK SPECS

ABSOLUTE ACCURACY (1)(2)(3)

1.5 - 3.0 cm RMSEz @ 120 m

INTRASWATH PRECISION (1)(2)(4)

2.0 cm RMSDz @ 120 m

EXAMPLE ACQUISITIONS:

UAV

- * 100 m AGL , 10 m/s, 90° FOV, 1200 kHz
- » Swath Width = 200 m
- » Avg. Density = 150 points/m²
- » Collection Rate = ~7 km²/hr

MOBILE

- » 360° FOV, 1200 kHz
- » Point Density = 1700 points/m² @ 10 m range to target
- » Collection Rate = 40 km/h (25 mph)

RANGER FLEX PAYLOAD RANGER FLEX w/CAMERA OVERALL DIMENSIONS (L x W x H) (cm) 27.9 x 20.9 x 17.3 33.4 x 20.9 x 17.3 POWER CONSUMPTION 75 W typical 85 W typical WEIGHT 4.7 kg / 10.3 lbs 5.5 kg / 12.1 lbs 0° - 40° C / 32° - 104° F OPERATING TEMPERATURE OPERATING VOLTAGE 14 - 28 VDC

LIDAR SENSOR

Source: RIEGL Laser Measurement System

LASER WAVELENGTH	1550 nm		
RANGE MIN	1.5 m at ≥1 MHz PRR		
RANGE MAX	755 m at 20% reflectivity, 50 kHz PRR		
PULSE REPETITION FREQUENCY	Up to 1200 kHz		
SCAN SPEED	10 - 200 lines/second		
MAX RETURN COUNT	15		
BEAM COUNT	1 facet rotating mirror		
BEAM DIVERGENCE	0.35 mrad @ 1/e		
HORIZONTAL FIELD OF VIEW	360°		
LASER ACCURACY	10 mm One sigma @ 150 m		
LASER SAFETY	CLASS 1		

APPLICATIONS

UTILITIES MAPPING

OIL & GAS SURVEYING

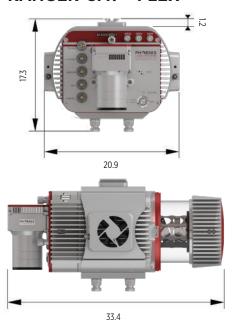
RAILWAY TRACK MAPPING

CONSTRUCTION SITE SURVEYING

TI GENERAL MAPPING

- (1) Approximate values based on PLS test methods described at https://docs.phoenixlidar.com/accuracy-
- (1) Approximate Values based on PLS test methods described at https://docs.prioeinxildar.com/accuracy-standards-and-quantification.
 (2) Using a 90° max downward field of view.
 (3) Expected RMSEz when following the PLS recommended acquisition & processing workflow and ASPRS
- check point guidelines.

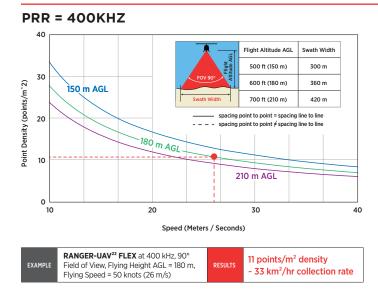
 (4) Flat surfaces with >20% reflectivity at the laser's wavelength.

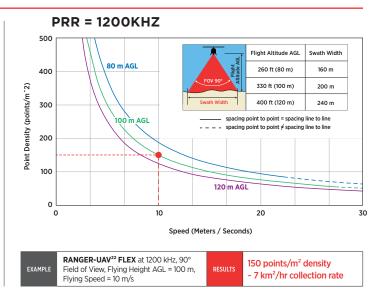

 (5) Estimated post-processed accuracy with IMU-30.

NAVIGATION SYSTEM

CONSTELLATION SUPPORT	GPS + GLONASS + BEIDOU + GALILEO
SUPPORT ALIGNMENT	Static, Kinematic, Dual-Antenna
OPERATION MODES	Real-time, Post-Processed
ACCURACY POSITION	1 cm + 1 ppm GNSS baseline RMS horizontal
ACCURACY ATTITUDE (5)	ROLL, PITCH: 0.002° RMS HEADING: 0.007° RMS

DIMENSIONS (cm)


RANGER-UAV²² FLEX



MEASUREMENT PERFORMANCE

Laser Pulse Repetition Rate PRR ^{1) 5)}	50 kHz	100 kHz	200 kHz	400 kHz	800 kHz	1200 kHz		
Max. Measuring Range 3)4)								
natural targets $\rho \ge 20\%$ (e.g. Dry roads)	755 m	545 m	390 m	280 m	200 m	160 m		
natural targets $P \ge 60\%$ (e.g. Sand)	1250 m	910 m	660 m	480 m	340 m	280 m		
natural targets $P \ge 80\%$ (e.g. Limestone)	1415 m	1040 m	755 m	550 m	390 m	320 m		
Max. Operating Flight Altitude AGL ²⁾⁵⁾								
@ P ≥ 20%	490 m (1590 ft)	350 m (1150 ft)	250 m (820 ft)	180 m (590 ft)	130 m (420 ft)	100 m (340 ft)		
@ P ≥ 60%	800 m (2640 ft)	580 m (1920 ft)	420 m (1390 ft)	310 m (1010 ft)	220 m (720 ft)	180 m (590 ft)		

RANGE & POINT DENSITY EXAMPLES

ACCESSORIES

EXPLORE A PHOENIX LIDAR SYSTEM FOR YOUR TEAM, CONTACT US!

PhoenixLiDAR.com • sales@phoenixlidar.com • USA +1.323.577.3366

²⁾ Setting of intermediate PRR values possible

³⁾ Typical values for average conditions. Maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 23 km. In bright sunlight, the max range is shorter than under overcast sky.

⁴⁾ Ambiguity to be resolved by post-processing.

⁶⁾ If more than one target is hit, the total laser transmitter power is split and, accordingly, the achievable range is reduced.