

QUICK SPECS

ABSOLUTE ACCURACY ${ }^{(1)(2)(3)}$

1.5-3cm RMSEz @ 120 m (preliminary)

INTRASWATH PRECISION ${ }^{(1)(2)(4)}$
2 cm RMSDz @ 120 m (preliminary)
EXAMPLE ACQUISITIONS:
uav
» 120 m AGL , $8 \mathrm{~m} / \mathrm{s}, 100^{\circ}$ FOV, 2400 kHz
» Swath Width = 286 m
» Avg. Density $=875$ points/m²
HELICOPTER
» 250 m AGL, 60 knots, 100° FOV, 1200 kHz
» Swath Width = 595 m
» Avg. Density = 54 points $/ \mathrm{m}^{2}$

APPLICATIONS

UTILITIES MAPPING

RAILWAY TRACK MAPPING

ํํㄴ CONSTRUCTION SURVEYING
齄 AGRICULTURE \& FORESTRY MONITORING
OPEN PIT MINING OPERATIONS
第
OIL \& GAS SURVEYING

RANGER-U160³

LEARN MORE

The RANGER-U160 $\mathbf{2 3}^{\mathbf{2 3}}$ adds range and density capabilities to an already unrivaled mapping system. It's unique forward and rear looking field of view was designed to minimize laser shadowing and provide a high level of detail on vertical surfaces. Pulse rates up to 2400 kHz and the ability to be carried by a variety of aircraft make this a highly versatile system that is suitable for mapping at various scales in order to meet your unique project objectives. The RANGER-U160²3 is ideal for corridor mapping applications such as utility, rail and pipeline inspection.

FEATURES

- Exceptional data density with measurement rates up to 2,000,000/s
- 3 facet polygon mirror with -10° back, 0° nadir, and $+10^{\circ}$ forward for improved detail on vertical structures and surfaces
- Easily mountable to unmanned platforms (UAVs) and to helicopters, gyrocopters, and other small piloted aircrafts
- 100° lateral field of view for single pass corridor coverage

PLATFORM

DIMENSIONS*	$27.5 \times 11.7 \times 22.2 \mathrm{~cm}$
OPERATING VOLTAGE	$18-28 \mathrm{VDC}$
POWER CONSUMPTION*	75 W typical
OPERATING TEMPERATURE	$0^{\circ}-40^{\circ} \mathrm{C} / 32^{\circ}-104^{\circ} \mathrm{F}$
WEIGHT* *	$3.4 \mathrm{~kg} / 7.5 \mathrm{lbs}$

LiDAR SENSOR

LASER WAVELENGTH	1550 nm
RANGE MINIMUM	5 m
RANGE MAXIMUM	$980 \mathrm{~m} @ 20 \%$ reflectivity, 300 kHz
PULSE REPETITION RATE	$300-2400 \mathrm{kHz}$
SCAN SPEED	$50-400$ lines/second
MAX RETURN COUNT	32
BEAM COUNT	3
BEAM DIVERGENCE	0.4 mrad
HORIZONTAL FIELD OF VIEW	100°
VERTICAL FIELD OF VIEW	$20^{\circ} @$ nadir
LASER ACCURACY	$0.01 \mathrm{~m} \mathrm{(1} \mathrm{\sigma} \mathrm{@} 150 \mathrm{~m})$
LASER SAFETY	$C L A S S 1$

NAVIGATION SYSTEM

CONSTELLATION SUPPORT	GPS + GLONASS + BEIDOU + GALILEO
SUPPORTED ALIGNMENT	Kinematic, Dual-Antenna
OPERATION MODES	Real-time, Post-Processed
ACCURACY POSITION	$1 \mathrm{~cm}+1$ ppm GNSS baseline RMS Horizontal
ACCURACY ATTITUDE	
ROLL, PITCH	0.002° RMS
HEADING	0.007° RMS

RANGER-U160 ${ }^{23}$ DIMENSIONS (mm)

RANGE MEASUREMENT PERFORMANCE

Laser Pulse Repetition Rate PRR ${ }^{1)}$	300 kHz	600 kHz	1200 kHz	1800 kHz	2400 kHz
Max. Measuring Range ${ }^{2) 3}$) natural targets $\rho \geq 20 \%$ natural targets $\rho \geq 60 \%$ natural targets $\rho \geq 80 \%$	$\begin{aligned} & 980 \mathrm{~m} \\ & 1600 \mathrm{~m} \\ & 1800 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 720 \mathrm{~m} \\ & 1180 \mathrm{~m} \\ & 1340 \mathrm{~m} \end{aligned}$	520 m 860 m 980 m	$\begin{aligned} & 420 \mathrm{~m} \\ & 720 \mathrm{~m} \\ & 820 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 370 \mathrm{~m} \\ & 620 \mathrm{~m} \\ & 720 \mathrm{~m} \end{aligned}$
Max. Operating Flight Altitude AGL ${ }^{27}$ 4) @ $\rho \geq 20 \%$ @ $\rho \geq 60 \%$	$\begin{gathered} 560 \mathrm{~m} \\ (1800 \mathrm{ft}) \\ 900 \mathrm{~m} \\ (2950 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 400 \mathrm{~m} \\ (1350 \mathrm{ft}) \\ 670 \mathrm{~m} \\ (2200 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 290 \mathrm{~m} \\ (950 \mathrm{ft}) \\ 490 \mathrm{~m} \\ (1600 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 240 \mathrm{~m} \\ (800 \mathrm{ft}) \\ 400 \mathrm{~m} \\ (1350 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 210 \mathrm{~m} \\ (700 \mathrm{ft}) \\ 350 \mathrm{~m} \\ (1150 \mathrm{ft}) \end{gathered}$
Max. Number of Targets per Pulse ${ }^{5)}$	32	24	11	7	5

1) Rounded average PRR.
2) Typical values for average conditions and average ambient brightness. In bright sunlight, the max. range is shorter than under an overcast sky.
3) The maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 23 km . Range ambiguities have to be resolved by multiple-time-around processing.
4) Considering max. effective $\mathrm{FOV} 100^{\circ}$, additional roll angle $< \pm 5$ deg.
5) If the laser beam hits, in part, more than one target, the laser's pulse power is split accordingly. Thus the achievable range is reduced

Source: RIEGL Laser Measurement Systems

MAX MEASUREMENT RANGE \& POINT DENSITY RANGER-U160²3

RANGER-U160²3 ACCESSORIES

EXPLORE A PHOENIX LiDAR SYSTEM FOR YOUR TEAM, CONTACT US!
PhoenixLiDAR.com • sales@phoenixlidar.com • USA + 1.323.577.3366

