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Using high-density UAV-Lidar for deriving tree height of Araucaria 1 

Angustifolia in an Urban Atlantic Rain Forest 2 

Abstract: Urban forest remnants contribute to climate change mitigation by reducing the 3 

amount of carbon dioxide in urban areas. Hence, understanding the dynamics and the 4 

potential of urban forests as carbon pools is crucial to propose effective policies addressing 5 

the ecosystem services' maintenance. Remote sensing technologies such as Light detection 6 

and ranging (Lidar) are alternatives to acquire information on urban forests accurately. In this 7 

paper, we evaluate a UAV-Lidar system's potential to derive individual tree heights of 8 

Araucaria angustifolia trees in an Urban Atlantic Forest. Additionally, the influence of point 9 

density when deriving tree heights was assessed (2,500, 1,000, 500, 250, 100, 50, 25, 10 and 5 10 

returns.m-2). The UAV-Lidar data was collected with the GatorEye Unmanned Flying 11 

Laboratory ‘Generation 2’. The UAV-Lidar-derived and field-based tree heights were 12 

compared by statistical analysis. Higher densities of points allowed a better description of tree 13 

profiles. Lower densities presented gaps in the Crown Height Model (CHM). The highest 14 

agreement between UAV-Lidar-derived and field-based tree heights (r = 0.73) was noticed 15 

when using 100 returns.m-2. The lowest rRMSE was observed for 50 returns.m-2 (8.35%). 16 

There are no explicit differences in derived tree heights using 25 to 2,500 returns.m-2. UAV-17 

Lidar data presented satisfactory performance when deriving individual tree heights of 18 

Araucaria angustifolia trees. 19 

Keywords: Forest inventory, GatorEye, Remote Sensing, Urban landscape. 20 

  21 



1. Introduction 22 

Exposure to nature has been linked to human health as they promote mental and 23 

physical health (Jim, 2004). The increasing demand for resources needed to manage people's 24 

lives and support modern life pressures resulted in several diseases such as stress, 25 

cardiovascular disease, stroke, depression, and asthma (Jiang et al., 2014; Tooke et al., 2009). 26 

Thus, urban green areas have been reported as effective in promoting mental and physical 27 

health.  28 

Urban green areas such as gardens, parks, and forest remnants play an essential role by 29 

providing several ecosystem services. These areas mitigate the heat island phenomena, 30 

regulate microclimate, protect biodiversity, improve life quality, and reduce the impacts of air 31 

pollution (Alonzo et al., 2014; La Rosa and Wiesmann, 2013; Tigges et al., 2013; Zhang et 32 

al., 2015). Besides, urban forest remnants contribute to climate change mitigation by stocking 33 

carbon dioxide in their biomass (Liu and Li, 2012; McHale et al., 2007). Hence, 34 

understanding the dynamics and the potential of urban forests as carbon pools is crucial to 35 

propose effective policies addressing the ecosystem services' maintenance (Alonzo et al., 36 

2016; Doukalianou et al., 2020; Zhang et al., 2020; ). 37 

Unfortunately, there is a lack of studies assessing urban forests, resulting in a poor 38 

understanding of these areas and their environmental contribution. Usually, these assessments 39 

are based on a limited set of plots randomly distributed within the remnants (Nowak et al., 40 

2008). In some cases, aerial images have been used to support sampling designs, given the 41 

difficulty in conducting full-cover inventories (Zhang et al., 2010). Moreover, the massive 42 

range of vegetation types and single-species dominance hinder these assessments, requiring, 43 

thus, exhaustive field and financial costs to comprehensive data collection (Means et al., 44 

2000). 45 



Given this scenario, remote sensing technologies emerge as an alternative to provide 46 

spatially extensive data, combining high temporal resolution and low cost. These technologies 47 

have been used in forests with complex structures, such as urban forest remnants (Alonzo et 48 

al., 2016; Donoghue and Watt, 2006; Hall et al., 2006). Combining field-based and remote 49 

sensing data seems to be the best practice (Cunha Neto et al., 2020, 2019), especially when 50 

high-resolution data is available. Recent studies indicated Light Detection and Ranging 51 

(Lidar) active sensors as promising tools to obtain tree parameters (Corona et al., 2012; 52 

Næsset and Økland, 2002; Oliveira et al., 2020) and design vegetation structure 3D maps 53 

(Guo et al., 2017; Safaie et al., 2021). Additionally, unmanned aerial vehicles (UAVs) have 54 

revolutionized earth and environmental research by their broad and fast application at low 55 

costs (Anderson and Gaston, 2013; Hao et al., 2020; Vivoni et al., 2014; Zhou and Zhang, 56 

2020). In forest assessments, ccs provide flexibility regarding spatial and temporal scales 57 

(Feng et al., 2015).  58 

Recent studies matched Lidar data and UAV technologies, resulting in an exciting 59 

combination of very high-resolution data from local to regional scales at a significantly lower 60 

survey cost (Asner et al., 2013; Hao et al.,2021; Li, Li and Feng, 2021; Peng et al., 2021; 61 

Wallace et al., 2012). Some researchers addressed their efforts in order to suggest modeling 62 

approaches for urban forests using Lidar data or integrating Lidar with optical images (Haala 63 

and Brenner, 1999; Holopainen et al., 2013; Liu et al., 2013; Saarinen et al., 2014; Whang et 64 

al., 2021; Wu et al., 2013). However, the application of UAV-Lidar to obtain individual tree 65 

data in urban forests still lacks research. 66 

The UAV-Lidar system seems to be more convenient over the Airborne Lidar 67 

(Airborne Laser Scanner - ALS), as it presents lower cost, more accessible transportation, and 68 

a higher density of points (> 800 returns per m-2). Thus, UAV-Lidar can provide digital 69 

models with higher resolution (Guo et al., 2017; Sankey et al., 2012, 2010). However, the 70 



understanding of point density influence when predicting individual tree parameters is still 71 

limited (Ruiz et al., 2014; Sankey et al., 2017). Hence, there is an evident need for 72 

investigating this influence by deriving individual tree metrics using the UAV-Lidar system 73 

(Guo et al., 2017; Jakubowski et al., 2013), mainly because these metrics are employed in 74 

allometric equations (Sanquetta et al., 2018). Thus, this paper investigates the potential of 75 

using UAV-Lidar data to derive the total tree height of Araucaria angustifolia (Bertol.) 76 

Kuntze (Brazillian pine) individuals in an urban remnant of the Atlantic Rain Forest. We also 77 

intended to evaluate the influence of point density on estimates' accuracy. 78 

 79 

2. Material and Methods 80 

2.1 Study area description 81 

The study area is an urban forest remnant located in Curitiba, State of Parana, southern 82 

Brazil. UAV-Lidar data collection was performed to cover approximately 150,000 m² (15 ha) 83 

of a very distinguished forest formation (so-called Araucaria Forest) from the Brazilian 84 

Atlantic Rain Forest (Maas et al. 2020). The study area is located within the coordinates 85 

25º26’50” and 25º27’33” S and 49º14’16” and 49º14’33” W (Fig. 1). The elevation ranges 86 

from 893.34 to 925.46 m (Machado et al., 2012). The region’s climate zone is classified as 87 

subtropical humid mesothermal (Cfa), with an undefined dry season, and an average 88 

temperature in the hottest month of 22°C, while the temperature is close to 12°C in the coldest 89 

month (Peel et al., 2007). 90 

The Araucaria Forest is a specific forest formation resulting from the interaction 91 

between Austral-Andean and tropical Afro-Brazilian floras (Maas et al. 2020). It is one of the 92 

most diverse forests across the globe and is considered one of the "hottest" hotspots of 93 

biodiversity (Laurance, 2009; Myers et al., 2000). Although the Araucaria forest has been 94 

severely devastated in the past few decades, the Brazilian pine stands out as a single emerging 95 

tree species (Carlucci et al., 2021; Lira et al., 2021; Pozzan et al., 2020). 96 



 97 

Fig. 1 is here 98 

 99 

2.2 Forest inventory 100 

The field-based data were collected in a field cruise performed in November 2019. A 101 

total of 171 Brazilian pine trees were measured regarding their circumference at 1.30 m height 102 

above the ground using a millimetric tape and later transformed into dbh (diameter at 1.30 m 103 

height above the ground). The tree height (h) was always measured with a Haglöf Vertex IV, 104 

while the geographical position was recorded using a Garmin GPS, model 62CSX. 105 

  106 

2.3 Lidar data collection 107 

The UAV-Lidar data was collected using the GatorEye Unmanned Flying Laboratory 108 

‘Generation 2’ (data available for download at www.gatoreye.org). The GatorEye ‘Generation 109 

2’ comprises a modified Phoenix Scout Ultra system with a STIM300 Internal Motion Unit 110 

(IMU), an L1/L2 dual-frequency GNSS receiver, an SSD drive, and a Velodyne 32c Ultra 111 

Puck. The Velodyne 32c accommodates 32 lasers with a range up to 220 m, providing an 112 

along-track field of view (FOV) of 40 degrees and 360 degrees of cross-track data. The post-113 

processing kinematic (PPK) flight trajectory was produced with on-site base station data in 114 

Novatel Inertial Explorer software, providing an point cloud absolute spatial accuracy of 115 

approximately 5 cm RMSE (Wilkinson et al., 2019). The flight height was 75 m 116 

(aboveground level) at a speed of 10 m.s-1 and an approximate horizontal distance between 117 

the adjacent flight lines of 40 m, producing a high-density Lidar point cloud totaling 172,800 118 

points and 2,781,56 returns.m-2. 119 

  120 

2.4 Lidar data processing 121 



The UAV-Lidar data was processed using the rLiDAR (Silva et al., 2017a) and lidR 122 

(Roussel and Auty, 2019) packages in software R version 3.6.1 (R Core Team, 2019). In order 123 

to evaluate the influence of point density when refining tree height, we thinned the original 124 

point cloud and defined nine scenarios as follows: 2,500, 1,000, 500, 250, 100, 50, 25, 10, and 125 

5 returns.m-². The 'lasfilterdecimate' function was used for this purpose. Then, we designed 126 

eight new normalized clouds according to ground points to generate both Digital Terrain 127 

Model (DTM) and Crown Height Model (CHM). The functions 'lasground', 'lasnormalize', 128 

'grid_terrain', and 'grid_canopy' were used.  129 

The 'lasground' function classified the point cloud into ground and non-ground, by that 130 

we use the CSF algorithm (Zhang et al., 2016), while 'lasnormalize' generated normalized 131 

LiDAR point clouds. The functions 'grid_terrain', and 'grid_canopy' obtained the Digital 132 

Terrain Model (DTM) and Crown Height Model (CHM), both with a resolution of 0.5 m. In 133 

'grid_terrain' we use ‘tin’ algorithm and 'grid_canopy' we use points-to-raster method.  134 

The function 'CHMsmoothing' was used as a smoothing filter (gaussian with sigma 135 

0.7) to remove possible noises and trees with a height below those measured in the field. 136 

Smoothed CHMs were combined with normalized clouds to derive the treetop and assess 137 

individual tree heights with the 'tree_detection' function by local maximum filter (lmf) 138 

algorithm (Popescu and Wynne, 2004). This algorithm was used because there is a biological 139 

consistency between the highest point in the point cloud and the treetops. Additionally, in the 140 

data curation, tree height was also estimated based on treetops, using the Vertex IV. Each 141 

treetop and geographical position allowed the identification of each Brazilian pine tree. A 142 

spatial join was applied to join by position the heights measured in the field and derived by 143 

UAV-Lidar. 144 

 145 

2.5 Assessment of derived heights 146 



The accuracy of each point density was evaluated by comparing UAV-Lidar derived 147 

tree height and field-based data. The Pearson correlation coefficient (r), as well as the root 148 

mean squared error (RMSE) and bias were assessed (Eq. 1 to 3) (Sanquetta et al. 2018). 149 

Additionally, graphical analysis was conducted to examine the residual pattern and agreement 150 

between UAV-Lidar and field-based values. The chi-squared test was employed to identify 151 

explicit differences (95% probability) – (Eq. 4). Duncan test was used to determine the best-152 

performed point density (95% probability). 153 
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Where: �� is the field-based tree height of the ith tree; �	 is mean of field-based tree heights; ��� 154 

is UAV-Lidar derived tree height of the ith tree; ��	 is the mean of UAV-Lidar derived tree 155 

heights; and n is the sample size (171 trees). 156 

 157 

3. Results 158 

3.1 Derived tree heights 159 

UAV-Lidar derived tree heights were assessed by descriptive analysis. Mean, 160 

minimum, and maximum, as well as the standard deviation, are shown in Table 1. A slight 161 

trend to higher mean values was noticed as the pulse density increased. The maximum tree 162 

height, however, decreased with higher densities. 163 

 164 



Table 1 is here 165 

 166 

The tree height distribution pattern was maintained when using densities from 100 to 167 

2,500 returns.m-2. Lower densities (5 and 10 returns.m-2) presented different patterns, in 168 

which lower values were observed, and the curves differed from field-based data (Fig. 2). 169 

 170 

Fig. 2 is here 171 

 172 

3.2 Tree profile assessment 173 

Most Lidar returns came from tree crowns, which is mainly caused by the nature of 174 

Brazilian pine's architecture. As expected, higher pulse densities provided better descriptions 175 

of tree profile. Lower densities poorly captured the stem profile (Fig. 3). This fact may 176 

probably affect tree height derivation since smaller variations were observed for derived 177 

heights in lower densities (> 50 returns.m-2), as shown in Table 1. 178 

 179 

Fig. 3 is here 180 

 181 

3.3 Digital Terrain and Crown Height Models 182 

Although pulse density proved to be critical in describing the tree profile, digital 183 

terrain models were less affected as the pulse density decreased (Fig. 4). All DTM produced 184 

for pulse densities higher than 50 returns.m-2 (Figs. 4b-f) showed a similar pattern compared 185 

to 2,500 returns.m-2 (Fig. 4a), except for 100 returns.m-2 (Fig. 4e). Hence, we noticed higher 186 

differences for lower densities (> 50 returns.m-2), in which these differences ranged from -2.5 187 

and 2.5 m (Figs. 4g-i). 188 

 189 

Fig. 4 is here 190 



 191 

Fig. 5a displays the CHM regarding 2,500 pulse density. We noticed small differences 192 

among CHM generated for higher densities (1,000, and 500 returns.m-2) – Figs. 5b and 5c. 193 

Intermediate densities (i.e., 250 and 100 returns.m-2) presented slightly higher differences 194 

(Figs. 5b-c), ranging from -7.5 to 2.5 m. It is worth noting that smaller densities showed a 195 

higher amplitude of differences, with extreme values of -15 m (Figs. 5f-i). 196 

 197 

Fig. 5 is here 198 

 199 

3.4 Performance of UAV-Lidar derived tree heights  200 

Although higher densities provided better descriptions of tree profiles, all statistics 201 

were enhanced as pulse density decreased, reaching the best statistics when using 50 (r = 202 

0.73, rRMSE = 8.35%, and Bias = -4.09%) to 100 (r = 0.72, rRMSE = 8.51%, and Bias = -203 

4.74%) returns.m-2 (Table 2). Lower densities (5 to 25 returns), however, presented the 204 

poorest results. Meanwhile, no explicit differences were observed when compared to field 205 

data, according to the Chis-square test.  206 

Table 2 is here 207 

 208 

A slight trend of overestimation was noticed in all cases (Fig. 6). We noticed that 209 

derived tree heights were generally overestimated. Smaller tree heights were better predicted 210 

as the densities increased. The slope between derived and field was illustrated and presented 211 

similar patterns among pulse densities (Fig. 6). 212 

 213 

Fig. 6 is here 214 

 215 



The Duncan test indicated that UAV-Lidar derived tree heights using 2,500 returns.m-2 216 

differed from the densities of 10 and 5 returns.m-2. There is no explicit difference when 217 

deriving the total tree height of Brazilian pine when using 25 - 2,500 returns.m-2 (Fig. 7). 218 

 219 

Fig. 7 is here 220 

  221 

4. Discussion 222 

This study indicated the potential of UAV-Lidar in deriving the individual tree height 223 

of Brazilian pine trees in an Urban Atlantic Forest. UAV-Lidar-derived tree heights presented 224 

a strong relationship with field-based data (r ranging from 0.44 to 0.73), as shown in Table 2. 225 

The evaluation of different point densities suggested that low densities could provide similar 226 

distribution compared to field-based values (10 and 25 returns.m-2). The particular tree 227 

architecture of Brazilian pine trees may have influenced the results, as they do not have a 228 

well-defined treetop but rather a cup shape. Field-based tree height is also influenced by tree 229 

architecture, especially when using hypsometers. We believe that a higher density of points 230 

could provide more accurate tree heights, which may be impractical to perform in traditional 231 

field methods since the operator's experience and environmental and stand conditions can lead 232 

to gross errors.    233 

A high density of points is also necessary for reproducing accurate 3D maps (Guo et 234 

al., 2017), as it captures detailed data from forest structure. Hence, it is possible to design a 235 

detailed description of forest surface and structure and high-resolution 3D maps (Campbell et 236 

al., 2018; Hamraz et al., 2017; Kükenbrink et al., 2017). Hamraz et al. (2017) suggested that 237 

densities higher than 100 returns.m-2 are necessary to describe the tree profile in natural 238 

forests. 239 



Accurate UAV-Lidar-derived tree heights are closely related to DTM accuracy (Watt 240 

et al., 2014, 2013). A few studies suggested that designing DTMs with low densities (> 5 241 

returns.m-2) resulted in satisfactory accuracy when deriving forest metrics (Rex et al., 2019; 242 

Silva et al., 2017b; Wannasiri et al., 2013). However, for designing CHMs, lower densities 243 

proved to be inefficient (Fig. 5), as suggested by Li et al. (2013). 244 

In our study, no explicit increase in accuracy was observed when point density 245 

increased, corroborating with Ruiz et al. (2014). These authors pointed out that accuracy and 246 

density are not directly proportional. Differently, Silva et al. (2017c) and Li et al. (2013) 247 

noticed greater accuracy and precision with higher densities. Jakubowski et al. (2013) used a 248 

Lidar point cloud with 57 returns.m-2 and reported that, at the plot level, high precision does 249 

not require a high density of returns. However, it is necessary for individual tree assessments. 250 

Point densities greater than 25 returns.m-2 behave well when deriving tree heights if Brazilian 251 

pine (rRMSE lower than 9%), despite a slight tendency of overestimation. Therefore, different 252 

point densities should be evaluated in each particular condition 253 

Wannasiri et al. (2013) used an airborne Lidar in Mangroves in Thailand and found a 254 

bias of -5.7% and rRMSE of 19.4% with 2.7 returns.m-2 when deriving tree heights. Guo et al. 255 

(2017) used a UAV-Lidar (293.4 returns.m-2) in Mangroves, China. These authors observed 256 

an RMSE of 1.08 m in a population of 2.8 m (mean stand height), equivalent to an rRMSE of 257 

38.57%. Yin and Wang (2019) using a UAV-Lidar (average density of 91 returns.m-2) found a 258 

bias between -3.5% and -9.4% and rRMSE between 6.3% and 14.3%. These studies reinforce 259 

the satisfactory results found in this study and the potential of the GatorEye Unmanned Flying 260 

Laboratory ‘Generation 2’.  261 

Although the future of UAV-Lidar technology as a source of 3D forest information 262 

seems to be very promising, it should be emphasized that it is still necessary to define the 263 

minimum point density to obtain forest metrics with higher precision and accuracy since it is 264 



possible to reduce the speed and/or height of the flight, in order to optimize the data collection 265 

(Ruiz et al., 2014). High-density point clouds imply higher financial costs and machine effort 266 

for effective processing, requiring computers with high processing and storage capacity (Aji 267 

et al., 2013; Hongchao and Wang, 2011; Werder and Krüger, 2009). 268 

 Finally, deriving individual tree metrics from UAV-Lidar data proved to be a 269 

promising approach, especially in green urban areas, such as the protected remnants of 270 

Araucaria Forest in Brazil. Traditional methods, mostly based on destructive methods, are 271 

impracticable. Thus, the use of UAV-Lidar seems a promising tool to assist volume, biomass, 272 

and carbon prediction. Future studies are needed to provide an additional evaluation 273 

contrasting UAV-Lidar derived tree height with direct measurements and deriving other 274 

individual tree metrics. 275 

 276 

 Conclusion  277 

This study investigated the potential of using UAV-Lidar data to derive A. angustifolia 278 

trees' height in an Urban Atlantic Forest. Complementary, the effect of the density of the 279 

points in obtaining its total height was assessed.  280 

High accuracy was noticed when deriving individual tree heights, regardless of the 281 

density of points. We found that the point cloud can be reduced up to 25 returns.m-2, with no 282 

accuracy loss. However, it is suggested that different point densities be evaluated regarding 283 

specific conditions of forest typology and structure, and study purposes.  284 

The structure of the tree's crown directly influenced the height estimate obtained by 285 

UAV-Lidar, however, smaller point densities can be used without influencing the accuracy of 286 

its height. DTMs with low point densities prove to be efficient for estimating forest metrics, 287 

however these densities are not very effective for projecting CHMs 288 

 289 
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Table 1. Descriptive statistics of the A. angustifolia UAV-Lidar derived tree height in an 

Urban Atlantic Forest 

Scenarios 

Statistic 

Min Mean Max 

Field-based  14.20 19.36 ± 1.63 24.00 

Point cloud density (return.m-²) 

2,500 16.23 20.5 5 ± 1.99 25.79 

1,000 16.25 20.51 ± 1.99 25.78 

500 16.17 20.46 ± 1.99 25.75 

250 16.19 20.39 ± 1.97 25.59 

100 15.90 20.27 ± 1.99 25.57 

50 16.02 20.15 ± 2.01 25.15 

25 15.75 19.93 ± 2.04 25.42 

10 14.61 19.8 5 ± 2.23 26.45 

5 11.86 19.25 ± 2.45 26.05 



Table 2. Performance of different point densities when deriving A. angustifolia tree height in 

an Urban Atlantic Forest 

Density r RMSE (m) rRMSE (%) Bias (m) Bias (%) χ² χ²c 

2,500 0.71 1.85 9.55% -1.2 -6.18 30.23ns 

200.33 

1,000 0.71 1.82 9.42% -1.15 -5.97 29.40ns 

500 0.72 1.78 9.18% -1.1 -5.68 27.88ns 

250 0.72 1.72 8.9% -1.03 -5.33 26.23ns 

100 0.73 1.65 8.51% -0.92 -4.74 23.89ns 

50 0.72 1.62 8.35% -0.79 -4.09 22.90ns 

25 0.67 1.63 8.43% -0.57 -2.96 23.07ns 

10 0.56 1.95 10.07% -0.49 -2.53 32.67ns 

5 0.44 2.27 11.71% 0.11 0.57 42.82ns 

 RMSE is root mean square error, r is Pearson correlation, χ² is calculated Chi-square test, 

χ²c is critical Chi-square test, ns is not significant by the Chi-square test (95% 

probability). 



 

Fig. 1. Location of the study area in Curitiba, State of Paraná, southern Brazil  

Note: DTM is the digital terrain model; CHM is the canopy height model. 

 



 

Fig. 2. Distribution of field-based and UAV-Lidar derived tree heights of A. angustifolia in 

an Urban Atlantic Forest 



 

Fig. 3. A. angustifolia tree profile derived from UAV-Lidar point cloud in in an Urban 

Atlantic Forest 

 



 

Fig. 4. Digital terrain model generated by the different point cloud density in the study area 

Note: a) is a DTM with 2500 returns.m-2; b) is the difference between the DTMs of 2,500 and 

1,000 returns.m-2; c is the difference between the DTMs of 2,500 and 500 returns.m-2; d) is 

the difference between the DTMs of 2,500 and 250 returns.m-2; e) is the difference between 

the DTMs of 2,500 and 100 returns.m-2, f) is the difference between the DTMs of 2,500 and 

50 returns.m-2; g) is the difference between the DTMs of 2,500 and 25 returns.m-2; h) is the 

difference between the DTMs of 2,500 and 10 returns.m-2; and i) is the difference between 

the DTMs of 2,500 and 5 returns.m-2. 

 



 

 

Fig. 5. Canopy height model generated by the different point cloud density in the study area 

Note: a) is a CHM with 2,500 returns.m-2; b) is the difference between the CHMs of 2,500 

and 1,000 returns.m-2; c) is the difference between the CHMs of 2,500 and 500 returns.m-2; d) 

is the difference between the CHMs of 2,500 and 250 returns.m-2; e) is the difference 

between the CHMs of 2,500 and 100 returns.m-2; f) is the difference between the CHMs of 

2,500 and 50 returns.m-2; g) is the difference between the CHMs of 2,500 and 25 returns.m-2; 

h) is the difference between the CHMs of 2,500 and 10 returns.m-2; and i) is the difference 

between the CHMs of 2,500 and 5 returns.m-2. 



 

Fig. 6. Residuals and agreement between field-based and UAV-Lidar derived tree height of 

A. angustifolia in an Urban Atlantic Forest 

 



 

Fig. 7. Boxplot of UAV-Lidar derived tree heights of A. angustifolia using different point 

densities in an Urban Atlantic Forest 

Note: Means followed by equal letters do not differ by Duncan test at 5% significance level. 

 


