
1 

 

Large scale multi-layer fuel load characterization in 1 

tropical savanna using GEDI spaceborne lidar data  2 

 3 

Rodrigo Vieira Leite1*, Carlos Alberto Silva2, Eben North Broadbent3, Cibele Hummel 4 

do Amaral1, Veraldo Liesenberg4, Danilo Roberti Alves de Almeida5,  Midhun 5 

Mohan6, Sérgio Godinho7,8, Adrian Cardil9,10,11, Caio Hamamura12 , Bruno Lopes de 6 

Faria13, Pedro H. S. Brancalion5, André Hirsch14, Gustavo Eduardo Marcatti14, Ana 7 

Paula Dalla Corte15, Angelica Maria Almeyda Zambrano16, Máira Beatriz Teixeira da 8 

Costa17, Eraldo Aparecido Trondoli Matricardi17, Anne Laura da Silva14, Lucas 9 

Ruggeri Ré Y Goya14, Ruben Valbuena18, Bruno Araujo Furtado de Mendonça19, Celso 10 

H. L. Silva Junior20,21, Luiz E. O. C. Aragão20,22, Mariano García23, Jingjing Liang24, 11 

Trina Merrick25,26, Andrew T. Hudak27, Jingfeng Xiao28, Steven Hancock29, Laura 12 

Duncason30, Matheus Pinheiro Ferreira31, Denis Valle32,Sassan Saatchi33, Carine 13 

Klauberg15 14 

1Department of Forest Engineering, Federal University of Viçosa (UFV), Av. Peter Henry 15 

Rolfs, 36570-900, Viçosa, MG, Brazil; chamaral@ufv.br, rodrigo.leite@ufv.br    16 

2Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, 17 

and Geomatics Sciences, University of Florida, University of Florida, PO Box 110410 18 

Gainesville, FL 32611; c.silva@ufl.edu 19 

3Spatial Ecology and Conservation (SPEC) Lab, School of Forest, Fisheries, and Geomatics 20 

Sciences, University of Florida, Gainesville, FL 32611 USA; eben@ufl.edu  21 

4Department of Forest Engineering, College of Agriculture and Veterinary, Santa Catarina 22 

State University (UDESC), Lages, SC, Brazil; veraldo.liesenberg@udesc.br 23 

5Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture, University of São 24 

Paulo (USP/ESALQ), Piracicaba, SP, Brazil;  daniloraa@usp.br; pedrob@usp.br 25 

6Department of Geography, University of California—Berkeley, Berkeley, CA 94709, USA; 26 

mid_mohan@berkeley.edu   27 

7EaRSLab—Earth Remote Sensing Laboratory, University of Évora, 7000-671 Évora, Portugal 28 

8Institute of Earth Sciences (ICT), Universidade de Évora, Rua Romão Ramalho, 59, 7002-554, 29 

Évora, Portugal; sgodinho@uevora.pt 30 

9Technosylva Inc, La Jolla, CA, USA, adriancardil@gmail.com 31 

10Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain 32 

11Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain 33 

12Federal Institute of Education, Science and Technology of São Paulo, SP, 11533-160, Brazil;  34 

hamamura.caio@ifsp.edu.br 35 

13Department of Forest Science, Federal University of Vales do Jequitinhonha e Mucuri, 36 

(UFVJM) Campus JK, Diamantina, MG, Brazil, blfaria@gmail.com 37 

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license

https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0034425721004843

Manuscript_59aa806230cefa5f8bdb0fb9d7d494ac

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0034425721004843


2 

 

14Federal University of São João Del Rei – UFSJ, Sete Lagoas, MG, Brazil, 35701-970; 38 

hirsch_andre@ufsj.edu.br; gustavomarcatti@ufsj.edu.br; annelsilva11@gmail.com, 39 

lucasgoya42.lr@gmail.com, carine_klauberg@hotmail.com  40 

15Department of Forest Engineering, Federal University of Paraná (UFPR), Curitiba, PR, 41 

Brazil, 80.210-130; anacorte@ufpr.br    42 

16Spatial Ecology and Conservation (SPEC) Lab, Center for Latin American Studies, 43 

University of Florida, Gainesville, FL 32611 USA; aalmeyda@ufl.edu 44 

17Department of Forestry, University of Brasília, Campus Darcy Ribeiro, Brasilia, DF, Brazil - 45 

70.910-900; mairabeatrizteixeira@hotmail.com ; ematricardi@gmail.com  46 

18School of Natural Sciences, Bangor University, Bangor LL57 2W, UK. 47 

r.valbuena@bangor.ac.uk 48 

19Silviculture Department, Universidade Federal Rural do Rio de Janeiro, Rua da Floresta, 49 

Seropédica, RJ, 23897-005, Brazil; brunomendonca@ufrrj.br 50 

20National Institute for Space Research, Earth Observation and Geoinformatics Division, Av. 51 

dos Astronautas, 1758, São José dos Campos SP 12227-010, Brazil, celsohlsj@gmail.com, 52 

luiz.aragao@inpe.br 53 

21Universidade Estadual do Maranhão (UEMA), Departamento de Engenharia Agrícola, São 54 

Luís, MA, 65055-310, Brazil 55 

22College of Life and Environmental Sciences, University of Exeter, Exeter, UK 56 

23Environmental Remote Sensing Research Group, Department of Geology, Geography and 57 

the Environment, Universidad de Alcalá, Calle Colegios 2, Alcalá de Henares, 28801, Spain. 58 

mariano.garcia@uah.es 59 

24Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 60 

USA, alpenbering@gmail.com  61 

25Department of Earth and Environmental Science, Vanderbilt University, Nashville, TN 62 

37240, USA 63 

26Department of Geography, Florida State University, Tallahassee, FL, USA. 64 

tmerrick@fsu.edu 65 

27US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 66 

South Main Street, Moscow, ID 83843, USA, andrew.hudak@usda.gov 67 

28Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, 68 

University of New Hampshire, Durham, NH 03820, USA. j.xiao@unh.edu  69 

29School of GeoSciences, University of Edinburgh, United Kingdom of Great Britain and 70 

Northern Ireland. steven.hancock@ed.ac.uk 71 

30 Department of Geographical Sciences, University of Maryland, College Park, MD 20740, 72 

USA; lduncans@umd.edu 73 

31Cartographic Engineering Section, Military Institute of Engineering (IME), Praça Gen. 74 

Tibúrcio 80, 22290-270 Rio de Janeiro-RJ, Brazil. matheus@ime.eb.br  75 



3 

 

32 School of Forest, Fisheries, and Geomatics Sciences, University of Florida, PO Box 110410, 76 

136 Newins-Ziegler Hall, Gainesville, FL 32611; drvalle@ufl.edu 77 

33NASA-Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, 78 

USA sasan.s.saatchi@jpl.nasa.gov   79 

 80 

 81 

*Corresponding author: Tel: + 55 (31) 99229-7126; Email: rodrigo.leite@ufv.br 82 

 83 

Abstract:  84 

 85 

Quantifying fuel load over large areas is essential to support integrated fire 86 

management initiatives in fire-prone regions to preserve carbon stock, biodiversity 87 

and ecosystem functioning. It also allows a better understanding of global climate 88 

regulation as a potential carbon sink or source. Large area assessments usually 89 

require data from spaceborne remote sensors, but most of them cannot measure the 90 

vertical variability of vegetation structure, which is required for accurately 91 

measuring fuel loads and defining management interventions. The recently launched 92 

NASA’s Global Ecosystem Dynamics Investigation (GEDI) full-waveform lidar 93 

sensor holds potential to meet this demand. However, its capability for estimating 94 

fuel load has yet not been evaluated. In this study, we developed a novel framework 95 

and tested machine learning models for predicting multi-layer fuel load in the 96 

Brazilian tropical savanna (i.e., Cerrado biome) using GEDI data. First, lidar data 97 

were collected using an unnamed aerial vehicle (UAV). The flights were conducted, 98 

over selected sample plots in distinct Cerrado vegetation formations (i.e., grassland, 99 

savanna, forest) where field measurements were conducted to determine the load of 100 

surface, herbaceous, shrubs and small trees, woody fuels and the total fuel load. 101 

Subsequently, GEDI-like full-waveforms were simulated from the high-density 102 

UAV-lidar 3-D point clouds from which vegetation structure metrics were calculated 103 

and correlated to field-derived fuel load components using Random Forest models. 104 

From these models, we generate fuel load maps for the entire Cerrado using all on-105 

orbit available GEDI data. Overall, the models had better performance for woody 106 

fuels and total fuel loads (R² = 0.88 and 0.71, respectively). For components at the 107 

lower stratum, models had moderate to low performance (R² between 0.15 and 0.46) 108 

but still showed reliable results. The presented framework can be extended to other 109 

fire-prone regions where accurate measurements of fuel components are needed. We 110 

hope this study will contribute to the expansion of spaceborne lidar applications for 111 

integrated fire management activities and supporting carbon monitoring initiatives 112 

in tropical savannas worldwide. 113 

 114 

Keywords: Active remote sensing, fire, modeling, machine learning, UAV-lidar, 115 

Cerrado, vegetation structure  116 

 117 
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1. Introduction 120 

Climate change mitigation and biodiversity conservation efforts across the world 121 

require an understanding of wildfire dynamics (Bowman et al., 2013, Lehmann et al. 122 

2014). Tropical Savanna ecosystems are generally fire-adapted (Simon et al., 2009, 123 

Hoffmann et al., 2012, Durigan & Ratter, 2016), but human activities have affected 124 

fire regimes and landscape characteristics (Hantson et al., 2015, Andela et al., 2017, 125 

Andela et al., 2018, Rosan et al. 2019, Durigan et al. 2020). Fire dynamics in tropical 126 

savannas depend, among other factors, on the vegetation structure and accumulated 127 

fuel loads (combustible contents) (Sandberg et al., 2001, Chuvieco et al., 2003, Keane 128 

et al., 2013). Fuel load structure continuity, condition (live or dead) and moisture are 129 

important variables for modeling fire behavior (Stavros et al., 2018, Gomes et al., 130 

2020a), assessing its severity (Hu et al. 2019, Klauberg et al., 2019), calculating 131 

greenhouse gas emissions (GHG) (Ogle et al., 2019, Gomes et al., 2020a) and 132 

improving landscape management and conservation strategies to promote a pyro-133 

diverse ecosystem (Schmidt et al., 2018, Franke et al., 2018). These applications 134 

demand measurements of all fuel components as they interact with fire differently. 135 

That includes necromass (e.g., duff, litter, downed wood debris) and different plant 136 

types (e.g., grasses, herbs, forbs, shrubs, trees).  137 

Remote sensing technologies are commonly used to examine fuel load 138 

distribution and spatial variability over large areas. In this regard, lidar (light 139 
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detection and ranging) sensors are preferred as they can directly detect different 140 

vegetation strata with high accuracy (Erdody et al., 2010, Gajardo et al., 2014, 141 

Szpakowski and Jensen 2019, Chuvieco et al., 2020). Generally, the approach for local 142 

scale fuel mapping relies on  discrete-return or full-waveform lidar sensors in aircraft 143 

or unnamed aerial vehicle (UAV) platforms to collect lidar data and calculate lidar-144 

derived metrics that will subsequently serve as predictor variables in statistical 145 

models (Hermosilla et al., 2014, Hudak et al., 2016a, Bright et al., 2017, Stefanidou et 146 

al., 2020). Nonetheless, when there are limited resources for airborne and UAV-lidar 147 

surveys, or it is necessary to upscale analyses to a regional/global level, images 148 

acquired by satellite systems operating in either optical or microwave domain are 149 

then required (Wulder et al., 2012, Garcia et al., 2017, Franke et al., 2018). The 150 

Geoscience Laser Altimeter System (GLAS, onboard ICESat-1 – Zwally et al., 2002) 151 

was the first spaceborne lidar sensor to collect sample data globally, and it was 152 

operational between 2003 and 2009. Although its main objective was to measure ice-153 

sheet changes, GLAS was also used for forest and fuel-related studies (Lefsky et al., 154 

2006, Duncanson et al., 2010, Ashworth et al., 2010, García et al., 2012, Peterson et al., 155 

2013, Ferreira et al. 2011). Its successor mission launched in 2018, ICESat-2, is a 156 

photon-counting lidar system that also provides valuable 3-D sample data globally 157 

that can be similarly used for biomass estimation (Narine et al., 2020). Yet, neither of 158 

these missions’ characteristics were optimized for collecting data over the global 159 

range of forest canopy structures which limits opportunities to use these data to 160 

examine some important biomes at regional scale. 161 
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A new promising near-global dataset for fuel load estimation comes from the 162 

Global Ecosystem Dynamics Investigation (GEDI) sensor, with unprecedented high 163 

resolution lidar data samples collected between ~52° north and south latitudes, 164 

available since April 2019 (Dubayah et al., 2020a). As the first of its kind, GEDI was 165 

specifically designed to measure forest structure. The sensor is characterized as a 166 

large-footprint (diameter of ~25 m) full-waveform lidar with penetration capability in 167 

forests with up to ~99% canopy cover (Hancock et al., 2019, Duncanson et al., 2020). 168 

GEDI’s penetration capabilities in dense vegetation is what mainly differentiates it 169 

from the previous spaceborne lidar sensors designed for ice sheet measurements. 170 

Furthermore, the footprints are separated at 60 m along track and 600 m across track 171 

- an improvement to GLAS’ 70 m footprint separated ~170 m along track (Zwally et 172 

al. 2002). The improved technical specification makes GEDI more suitable than any 173 

previous spaceborne sensor to measure forest structure at regional and global scales.  174 

The GEDI mission plan includes the delivery of a global aboveground dry 175 

biomass (AGB) product at a spatial resolution of 1-km (Dubayah et al. 2020a) that is 176 

suitable for global biomass mapping requirements (Hall et al., 2011). These AGB 177 

estimates are expected to be the global benchmark of forest AGB, essential for 178 

measuring the world’s carbon stocks. Furthermore, recent studies used GEDI 179 

waveform metrics for developing models to estimate forest height (Potapov et al., 180 

2021, Rishmawi et al., 2021), biomass (Saarela et al., 2018, Silva et al., 2021, 181 

Duncanson et al., 2020, Rishmawi et al., 2021), and canopy structure diversity 182 



7 

 

(Marselis et al., 2018, Schneider et al., 2020, Rishmawi et al., 2021). However, to date, 183 

no published study on estimation of fuel loads from GEDI data is available and the 184 

GEDI AGB products may be of limited use  for fire-related applications because 185 

calibration data to derive information on important layers may be lacking – such as 186 

from duff, litter, down woody debris, grasses, forbs and shrubs. In addition, these 187 

lower fuel strata layers that are crucial for fire behavior and emissions are commonly 188 

not considered in previous studies using spaceborne lidar sensors (Lefsky et al. 2005, 189 

Garcia et al. 2012, Peterson et al. 2013). Therefore, it is necessary to develop models 190 

using GEDI-derived metrics that consider all fuel load components for effectively 191 

meeting integrated fire management criteria and for improving carbon budget 192 

estimates.  193 

Confirming GEDI’s capability to predict fuel loads in savannas will open a range 194 

of new opportunities to improve fire management planning and decisions at regional 195 

and global scales. Furthermore, the possibility of having this information from space 196 

also opens the range of GEDI applications to map fuel loads during the mission life-197 

span and for upcoming lidar satellite missions (e.g., Multi-footprint Observation 198 

Lidar and Imager - MOLI (Murooka et al., 2013, Kimura et al., 2017, Asai et al., 2018). 199 

The applications of such technological advances include mapping fire risk, carbon 200 

emissions and estimate fire behavior and fuel load dynamics for larger areas such as 201 

countries or entire biomes, thus contributing to mitigate the impacts of climate 202 

change in these regions. The overall aim of this study was to assess the capability of 203 
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GEDI for estimating large-scale multi-layer fuel loads in the Brazilian tropical 204 

savanna (Cerrado). Herein,  we developed a framework to i) calibrate and validate 205 

Random Forest (RF) models for predicting different fuel layers (ground, surface, 206 

shrubs, trees and total fuel load) at the plot level across the complex gradient of 207 

Cerrado formations (i.e., grassland, savanna and forest) in Brazil from field and 208 

simulated GEDI data; and ii) characterize large-scale, multi-layer fuel loads across 209 

the entire Cerrado (i.e. 1.9 million km²) by applying the calibrated RF models to on-210 

orbit GEDI data collected over its whole extent, and then aggregating the footprint 211 

level fuel load estimates to 1-km-resolution grid across the biome.  212 

2. Material and Methods 213 

2.1. Study area 214 

The Brazilian Cerrado is the most biodiverse savanna in the world and 215 

considered as a top global hotspot for conservation priorities (Myers et al. 2000). It 216 

has been rapidly converted to crop and pasturelands and less than half of its original 217 

vegetation cover remains (Strassburg et al. 2017). This native vegetation, however, 218 

has been severely impacted by human-mediated shifts in fire regimes and 219 

widespread invasion of fire-prone African fodder grasses (Durigan and Ratter, 2016). 220 

Our study sites are located in the Serra do Cipó National Park (SCNPK), Chapada 221 

dos Veadeiros National Park (CVNPK), Paraopebas National Forest (PNF) and 222 

University of São João Del-Reis Forest (UFSJ) (Fig. 1). Site locations were chosen  to 223 

span a range of vegetation structures within the Cerrado biome, covering the three 224 
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major formations (i.e., grassland, savanna, and forest). In Cerrado, grasslands are 225 

characterized by the presence of grass species alone (vegetation type locally known 226 

as “Campo limpo”), with scattered shrubs (“Campo sujo” and “Campo rupestre”), or 227 

dominated by grasses and shrubs with scattered trees (“Cerrado ralo”). The savanna 228 

formation is mostly dominated by contorted short trees with scattered shrubs and 229 

grasses (e.g., “Cerrado sensu stricto”). Forests are tree-dominated formations (e.g., 230 

“Cerradão”, in addition to the extra-Cerrado forest formations as Riparian and 231 

Gallery forests). For further study site characteristics regarding their location, 232 

seasonal/climate traits, soil characteristics and topography, please refer to section 2.1 233 

in Costa et al. (2021). 234 

 235 

Fig. 1. Spatial location of the Brazilian savanna (Cerrado) (a, b) and study sites where 236 

UAV-lidar and field data were collected, namely, Chapada dos Veadeiros National 237 
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Park (CVNPK, c1), Serra do Cipó National Park (SCNPK, c2) Paraopeba National 238 

Forest (PNF, c3) and University of São João Del-Rei’s Forest (UFSJ, c4). Fig.c1-c4 239 

show the UAV-lidar coverage and canopy height model derived from the 3D point 240 

cloud.  241 

2.2 Fuel load measurements  242 

We established sample plots in different Cerrado vegetation formations (i.e., 243 

grassland, savanna, and forest) between June and July 2019. First, 50 square plots of 244 

30 x 30 m (900 m2) were set across the study sites (Fig. 2a). Each plot corner was 245 

geolocated using a Differential Global Navigation Satellite System (Fig. 2c). 246 

Subsequently, four 1 x 1 m (1 m2) and two 1 x 5 m (5 m2) subplots were set within 247 

each plot to measure surface and shrubs/small trees fuel components, respectively 248 

(Fig. 2b, 2d). In the field, all duff, litter and downed woody debris (surface fuels; 249 

�������) were separated from non-woody grasses, herbs and forbs (herbaceous fuels; 250 

�	�����). They were immediately weighed with a 10 g precision scale. Three 500 g 251 

samples were taken to be weighed on a laboratory scale (precision of 1 mg) and oven 252 

dried at 65°C until a constant weight was reached. The fresh and dry weight of the 253 

samples were used to calculate fuel moisture content (FMC, Eq. 1). The total dry 254 

biomass of ������� and �	����� were then calculated for the plots using Eq. 2 and 3. In 255 

addition, ������� and �	�����were summed up to create a single component of the 256 

lowest stratum ������� (Eq. 4). 257 


��(%)  =  (
� − ��)/��, (eq.1) 
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where: FW is the sample’s fresh weight (g) measured in the field and DW is its oven-258 

dried weight (g). 259 

������� = ∑ (������(��) + � !!"#�(��) + �$%&"� %$$��(��)' ( (1 −*�+,

��)) (  �-
./, 

(eq.2) 

where: ������� is the total dry biomass (Mg ha-1) of duff, litter and downed wood 260 

collected in sub-plot i. HEFSU is the hectare expansion factor of 2.5 used to convert 261 

from kg to Mg ha-1. 262 

�	����� = ∑ (�&$& − %$$�0 �#122"2� (��) + �$#32 �(��)' ( (1 −*�+,

��)) (  �-
./, 

(eq.3) 

where: �	�����  is the total dry biomass (Mg ha-1) in plot i of non-woody grasses and 263 

forbs collected in subplot j. 264 

������� = ������� + �	�����, (eq.4) 

where: ������� is the total dry biomass (Mg ha-1) of the lowest vegetation stratum. 265 

Similarly, all the shrubs and trees with diameter at breast height (dbh, 1.3 m) < 10 266 

cm were harvested and immediately weighed with a 10 g precision scale. Three 500 g 267 

samples of stems, branches and leaves were taken to be weighed in a laboratory scale 268 

(precision 1 mg) and oven dried at 65°C until constant weight was reached. The total 269 

dry biomass of this component was then calculated using Eq. 5. 270 

������� = 4 ((2ℎ#�32� (��) + 261�� !#""2� (��)) ( (1 − 
��)) (  �-
..*
�+,  (eq.5) 
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where: ������� is the total dry biomass (Mg ha-1) of shrubs and small trees (dbh < 10 271 

cm). HEFss = 2.5. 272 

Finally, all the trees in the plots with dbh ≥ 10 cm were measured for total height 273 

(ht) and dbh using a digital clinometer and diameter tape, respectively. We used those 274 

measurements to estimate the dry aboveground biomass of trees (�������) using Eq. 275 

6 (Chave et al., 2014).  276 

������� = ∑ 0.0673 *< +, ( (= ( �3ℎ<> ( ℎ!<)?.@AB ( �-
CD , (eq.6) 

where: ������� is the total dry aboveground biomass of trees (Mg ha-1); dbhj and htj 277 

are the dbh (cm) and ht (m) per tree j; = is the wood density (g cm-3) derived from 278 

Zanne et al. (2009). HEFwd = 0.011. The total fuel load (F
�����) was calculated by 279 

summing all the components (Eq. 7). Table 1 summarizes fuel load component values 280 

in the sample plots by each Cerrado formation and a description of the data 281 

collection authorization process is in the supplementary material. 282 

F
����� = ������� +  �	����� +  ������� +  ������� (eq.7) 
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 283 

Fig. 2. Summary of field data survey where different plot sizes were designed for 284 

collecting tree, shrub, and surface fuels (a, b). Subfigures c) and d) depict plot 285 

sampling configuration and surface fuel collection, respectively. 286 

Table 1. Summary of field measurements of surface fuels (�������), herbaceous 287 

(�	�����), surface and herbaceous fuels (�������), shrubs (�������, dbh < 10 cm), woody 288 

fuels (�������, dbh ≥ 10 cm) and total fuel load (F
�����) over the different Cerrado 289 

formations (i.e., grassland, savanna and forests). 290 

 291 

Cerrado 

formation 

Number 

of plots 

Fuel 

component 

Fuel load (Mg ha-1) 

min max mean sd 

Grassland 5 ������� 2.7 10.3 5.1 3.1 
  �	����� 3.7 19.9 10.6 6.8 
  ������� 6.6 25.6 15.7 8.5 
  ������� 0.1 4.5 1.4 1.8 
  ������� 0.0 0.6 0.1 0.3 
  F
����� 11.7 25.9 17.2 7.3 

Savanna 30 ������� 2.0 22.4 8.0 4.1 
  �	����� 0.6 7.7 3.7 1.9 
  ������� 3.8 26.1 11.7 4.5 
  ������� 0.5 39.7 10.1 9.2 
  ������� 0.0 55.6 18.6 17.1 
  F
����� 13.3 100.2 40.4 23.5 

Forest 15 ������� 0.8 30.1 13.9 7.3 
    �	����� 0.4 6.7 1.3 1.6 
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    ������� 1.3 30.7 15.3 7.8 
    ������� 0.0 36.8 11.9 13.1 
    ������� 25.9 138.1 77.1 39.2 
    F
����� 43.7 187.9 104.2 42.4 

 292 

2.3. UAV-lidar data acquisition and processing 293 

The UAV-lidar 3-D point clouds were acquired with the GatorEye Gen 1 UAV 294 

system (Broadbent et al., 2021) in July 2019. The GatorEye platform was a DJI M600 295 

Pro hexacopter that integrated a Velodyne VLP-32c dual-return laser scanner lidar 296 

with an Inertial Measurement Unit (Fig. 3), and it was coupled with a dual-return 297 

lidar sensor with 32 separate lasers, each having a 360° vertical field of view (FOV). 298 

The sensor emitted around 600,000 pulses per second with a theoretical return 299 

number of 1.2 million returns per second and in parallel, a Global Navigation 300 

Satellite System (GNSS) receiver collected static geolocation data to calculate a post-301 

processing kinematic (PPK) flight trajectory. Herein, UAV-lidar 3D point cloud data 302 

processing included implementing the GatorEye Multi-scalar Post-Processing 303 

Workflow (as detailed in Broadbent et al., 2021), aligning the flight lines, and 304 

clipping the point clouds within the field plots for GEDI data simulation (Section 305 

2.4).  306 
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 307 

Fig. 3. GatorEye UAV-lidar (Gen 1) system. a) DJI M600 Pro hexacopter, with 308 

Phoenix Scout Ultra, hyperspectral, and visual sensors; b) three GNSS antennas for 309 

navigation, and one for sensor trajectory (positioned in the middle); c) Velodyne 310 

Ultra Puck lidar system. 311 

2.4. GEDI data 312 

2.4.1. GEDI full-waveform simulation 313 

We simulated GEDI data from the UAV-lidar 3D point cloud for calibrating fuel 314 

load models to avoid the geolocation errors of GEDI (~10-20 m) and due to the fact 315 

that GEDI orbits are likely not to overlay our field plots. The GEDI pre-launch plan 316 

included the development of a GEDI simulator that is able to reproduce the on-orbit 317 

GEDI data characteristics for the calibration of aboveground biomass models 318 

(Hancock et al., 2019). The simulation includes transforming discrete-return lidar 319 

point clouds into full-waveform signals (Blair and Hofton 1999) in GEDI-sized 320 

footprints and with the expected GEDI instrument noise added. The waveform 321 

signal-to-noise ratio (SNR) on the on-orbit GEDI data depends on characteristics such 322 

as laser type (power or coverage), acquisition time (day or night), canopy cover and 323 

atmospheric conditions (Hancock et al., 2019, Dubayah et al., 2020a, Ducanson et al., 324 

2020). The simulator ensures consistency across point cloud flight characteristics 325 
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especially for high-density lidar point clouds, as used as input in this study, that 326 

allow consistently transferring models to the on-orbit GEDI data. Complete 327 

description and validation of the GEDI simulator are described in detail in Hancock 328 

et al., 2019. GEDI-like waveforms were simulated from the high-density UAV-lidar 329 

point clouds clipped to the study sample plots using the gediWFSimulator tool in the 330 

rGEDI package (Silva et al., 2020) in R (R Core Team 2020). Realistic noise was added 331 

considering a beam sensitivity of 0.98 (i.e., the canopy cover at which ground is 332 

detected 90% of the time with 5% probability of a false positive Hancock et al. (2019)) 333 

by using a link margin of 4.956 at 95% of canopy cover that relates to noise of the 334 

power beam collecting data at night (Boucher et al., 2020). For ground detection and 335 

metrics calculation, the waveforms were denoised and smoothed by setting the noise 336 

threshold as the mean plus 3 standard deviations and smoothing width (applied after 337 

denoising) equal to 0.5 m (Qi et al., 2019, Silva et al., 2021).  338 

2.4.2. GEDI-derived vegetation structure metrics 339 

We calculated the following metrics from the simulated GEDI full-waveforms 340 

(Table 2):  RH (relative height) at the 98th height percentile (RH98, in m), canopy 341 

cover fraction (CCF, in %), plant area index (PAI, in m2 m-2), and Foliage Height 342 

Diversity (FHD, unitless). These metrics were selected to match to the GEDI Level 2A 343 

and 2B products and facilitate model interpretability. RH98 represents the height 344 

below which 98% of the returned laser energy is registered. It was selected to 345 

represent the top of the canopy, avoiding the noise of using the last return elevation 346 
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value (Silva et al. 2018). The CCF is related to the percent of the ground covered by 347 

the vertical projection of canopy material calculated from the Gaussian fitted ground 348 

signal. PAI is the projected area of plant elements per unit ground surface, which 349 

relates to the canopy cover and plant occupation of the vertical space. The FHD is an 350 

index for expressing canopy structure complexity and vertical distribution 351 

(MacArthur and Horn 1969). It is calculated by summing the product between the 352 

proportion of vertical PAI profiles and its logarithm in a selected horizontal layer 353 

(Tang and Armston, 2019). The theoretical basis and full description of cover and 354 

vertical profile GEDI metrics are detailed in the algorithm theoretical basis document 355 

(Tang and Armston, 2019). The metrics were calculated using the gediWFMetrics 356 

function in rGEDI (Silva et al., 2020) (Fig. 4).  357 

Table 2. GEDI waveform metrics used as predictors to estimate fuel load components 358 

Acronym Description 

RH98 Relative height at the 98th height percentile (m) 
PAI Plant Area Index (m2 m-2) 
CCF Canopy cover fraction (%)  
FHD Foliage Height Diversity (unitless) 
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 359 

Fig. 4.  Cerrado formations (a1, b1, and c1) and respective 3D point clouds from a 360 

UAV lidar survey (a2, b2, and c2) and metrics from the simulated waveforms (a3, b3, 361 

and c3). 362 

2.5 Fuel load modeling development 363 

Principal Component Analysis (PCA) was applied using the R package 364 

FactoMineR (Lê et al., 2008) for characterizing fuel load and GEDI metrics across 365 

field plots and vegetation formations. An explorative analysis of the derived PC 366 

scores was conducted in the first two components to analyze the relationships 367 

between field and GEDI variables. 368 

Fuel loads were modeled separately, yielding five models with the GEDI metrics 369 
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as predictors and �������, �	�����, �������, �������, ������� and F
����� as response 370 

variables. We used the random forest (RF) algorithm implemented through the Caret 371 

R package (Kuhn 2020) as our modeling approach. RF builds regression tree 372 

ensembles from bootstrapping the data, and the final prediction is the average 373 

ensemble outcome (Breiman et al., 1984, Breiman 1996). This method was selected for 374 

being flexible to the different data distributions present in our dataset due to the 375 

various vegetation structures in the Cerrado formations (Fig. S1). Each RF was built 376 

with 500 trees tuning the number of predictors at each split (mtry). We tested mtry 377 

ranging from two to four (2 ≤ mtry ≤ 4), selecting the best tuned model in a 5-fold 378 

cross-validation assessment using the coefficient of determination (R2), absolute (Mg 379 

ha-1) and relative (%) root square mean error (RMSE) and mean difference (MD) (Eq. 380 

8 to 12).  381 

G> =  1 −  ∑ (HIJ HKI)LIMN O
∑ (HIJ HP)LIMN O , (eq.8) 

G��- (�� / ℎ1) = Q∑ (HRS J HI)OLIMN * , (eq.9) 

G��- (%) =  TU.VHP  ( 100, (eq.10) 

�� (�� / ℎ1) =  ∑ (HKIJ HI)LIMN * , (eq.11) 

�� (%) = UWHP  (100, (eq.12) 

where: XYS is the estimated fuel load (Mg ha-1), X� is the observed fuel load (Mg ha-1); n 382 

is number of samples. For each fuel layer, the tuned model was run 500 times to 383 

account for the algorithm randomness.  384 
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2.6 Fuel loads characterization in Cerrado  385 

The GEDI Level 2A and 2B version 2 data products (Dubayah et al., 2021b, , 386 

Dubayah et al., 2021c) collected between April 18, 2019 and October 29,, 2020 were 387 

downloaded over the entire Cerrado vegetated area. The GEDI orbits intersecting 388 

Cerrado limits were found and downloaded using the gedifinder and gediDownload 389 

functions in rGEDI package (Silva et al., 2020). The footprints were masked to the 390 

Cerrado vegetated area based on the land cover classification from Mapbiomas for 391 

the same year of the data collection (Souza et al. 2020). The GEDI footprint-level 392 

metrics (Table 2) were extracted using the getLevel2AM and getLevel2B functions and 393 

filtered using the quality flag (quality_flag = 1). This flag indicates usable data by 394 

summarizing individual quality assessment parameters based on waveform shot 395 

energy, sensitivity (< 0.9 over land), amplitude, and real-time surface tracking quality 396 

(Hofton and Blair 2019, Beck et al., 2020).  397 

The fuel load models developed in item 2.5 were applied to the GEDI footprints 398 

(diameter of ~25 m) collected across the Cerrado biome extent. Fuel load maps of 399 

each component were created by taking the average of the footprint-level estimates 400 

at 1-km² grid cells for mapping purposes and compatibility with planned gridded 401 

GEDI products (Dubayah et al., 2020a) and requirements for global biomass maps 402 

(Hall et al., 2011).  403 

We calculated the uncertainty of fuel load predictions in each cell by accounting 404 

for the footprints’ variability within the cell, uncertainty associated with the RF 405 

algorithm, and RF lack of fit. To show this we start by assuming that the fuel load 406 
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estimate at footprint i with model m is given: 407 

G
�Z =  [� +  "�Z, (eq.13) 

where [� is the overall mean prediction for footprint i and "�Z is an error term. We 408 

assume that the expected value and variance of this error are E["�Z] = 0 and 409 

\1#["�Z] = _�>, respectively. The parameter _�> captures the within-footprint 410 

variability associated with the randomness of the RF algorithm. We also assume that 411 

the RF mean prediction [�is given by: 412 

[� = `� + a� (eq.14) 

 413 

where `� is the true biomass of footprint i and a�is another error term. This error term 414 

accounts for the fact that mean RF prediction is not identical to the true biomass. We 415 

assume that -[a�] = 0 and \1#[a�] = b>, where b> quantifies the uncertainty 416 

associated with the lack of fit of the RF model. These equations imply that: 417 

G
�Z = `� + a� + "�Z. (eq.15) 

 418 

The fuel load prediction at footprint i is then given by the average of the RF 419 

models applied to footprint i: 420 

G
YPPPP = ∑ G
�ZZ� = �`�� + �a�� + ∑ "�ZZ� = `� + a� + ∑ "�ZZ�  (eq.16) 

 421 

where G
YPPPP is the mean fuel load estimate at footprint i and M is the number of RF 422 

models that were fit. Assuming no correlation between lack of model fit (a�) and 423 

differences between RF models ("�Z), this implies that: 424 
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\1#(G
YPPPP|`�) = b> + _�>�  
(eq.17) 

 425 

Recall that we took the average of all GEDI footprint-level fuel load predictions 426 

within a 1-km2 cell. Assuming no spatial correlation in the mean fuel load in each 427 

footprint and model lack of fit, we have that the uncertainty associated with each cell 428 

is: 429 

\1#(G
PPPPd) = \1# e∑ G
PPPP�d�&d f = \1# g∑ `�d�&d + ∑ a�d�&d + ∑ ∑ "�ZdZ�� &d h 
(eq.18) 

 430 

where &d is the number of GEDI footprints within the 1-km2 cell (k). 431 

If we assume that the uncertainty associated with model lack of fit (b>) does not 432 

vary from footprint to footprint, then: 433 

= \1# e∑ `�d�&d f + \1# e∑ a�d�&d f + \1# g∑ ∑ "�ZdZ�� &d h 
(eq.19) 

= \1# e∑ `�d�&d f + &db>&d> + 1&d> i4 �_�d>�>� j 
(eq.20) 

= \1# e∑ `�d�&d f + b>&d + ∑ _�d>�&d>�  
(eq.21) 

 434 

Finally, if we assume that -[`�d] = 6d and \1#[`�d] = kd>, then the overall 435 

uncertainty at each cell (k) is given by: 436 

= kd>&d + b>&d + ∑ _�d>�&d>�  
(eq.22) 

 437 

This expression shows that the variance for each cell k can be partitioned into the 438 
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variability of biomass within each cell k (captured by kd>), model lack of fit (captured 439 

by b>) and RF uncertainty (captured by _�d> ). Notice that, as the number of GEDI 440 

footprints within cell k increases (i.e., &d increases), then overall uncertainty 441 

decreases. Furthermore, increasing the number of RF models (i.e., M) only decreases 442 

the last uncertainty piece.  443 

For each cell, we estimated kd>  and _l�d>  with the following equations: 444 

kmd> = ∑ (G
PPPP�d − G
PPPPd)>� &d − 1  
(eq.23) 

_̂�d> = ∑ (G
�dZ − G
PPPP�d)>Z � − 1  
(eq.24) 

 445 

where G
PPPP�d is the mean fuel load  prediction of footprint i in cell k, G
PPPPdis the mean 446 

fuel load prediction in cell k, G
PPPP�dZis the fuel load prediction of footprint i in cell k 447 

using RF model m. The only variance parameter that is estimated separately using 448 

the field data is the lack of fit parameter (i.e., b>). The estimation of this parameter is 449 

described in the supplementary material. The uncertainty is presented in absolute 450 

values by taking the square-root of the summed variance parameters.  A workflow 451 

summarizing the full methodology applied in this study is provided in Fig. 5. 452 
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 453 

Fig. 5. Workflow to estimate fuel load components in Cerrado using GEDI data. High density UAV-lidar point clouds were 454 

collected (a) from which GEDI-like waveforms were simulated (b). The models were created using fuel load measurements from 455 

the field (c) as response variables in a random forest (RF) model and GEDI waveform metrics as predictors (d). The RF models were 456 

applied to the 25-m GEDI footprints in Cerrado (e) and averaged into 1-km grid cells (f).457 
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3. Results 458 

3.1. Exploratory analysis of GEDI metrics and fuel components in the Cerrado 459 

formations 460 

The PCA biplot shows distinct scores for the Cerrado formations and these first 461 

two PCs were responsible for 75.7% of the variables’ cumulative variance (Fig. 6a). 462 

The RH98 and FHD showed high correlation with each other (r = 0.94, p-value = 2.2E-463 

16) and were the two metrics mainly explaining the variability in PC1 being, overall, 464 

positively correlated to samples in the forest formation and negatively correlated 465 

with grassland observations. The fuel components that were mostcorrelated with 466 

RH98 and FHD were ������� (r > 0.85 p-value < 2.2E-15) and F
����� (r > 0.82, p-value 467 

< 1.3E-13). ������� had a weaker relationship (r < 0.51, p-value < 0.0008) with the 468 

GEDI variables, though higher values were found in forests (Fig. 6b). Similarly, 469 

������� had lower correlations (r < |0.30|, p-value < 0.03) with the GEDI variables 470 

than its sub-components ������� (r < 0.52, p-value < 0.0008) and �	����� (r < |0.59|, p-471 

value < 0.002). The grassland observations showed opposite scores on PC1 compared 472 

to the forest observations and were mostly represented by the variation in �	�����; 473 

this is consistent with the dominance of herbaceous species in these formations (Fig. 474 

S2) indicated by the negative correlation of �	����� with the metrics CCF and PAI. 475 

The savanna formation lies near the center, overlapping with the other two 476 

formations. This is also depicted in the variables’ distributions (Fig. 6b), where most 477 

of the GEDI waveform metrics showed increasing values from grasslands to forests.  478 
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 479 

Fig. 6. Biplot of the first two axes of a principal component analysis of simulated 480 

GEDI waveforms metrics and field fuel load measurements (a) and their respective 481 

density plots (b). RH98 = Relative height at the 98 th height percentile; CCF = canopy 482 

cover fraction; FHD = Foliage Height Diversity; PAI = Plant Area Index; �������  = 483 

surface fuels (duff, litter, downed wood); �	����� = Herbaceous fuels; �������  = 484 ������� + �	�����; ������� = shrubs and small trees (diameter at 1.3 m above ground 485 
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(dbh) < 10 cm); �������  = woody fuels (trees with dbh > 10 cm); F
����� = ������� + 486 �	����� + �������  + �������. 487 

 488 

3.2 Fuel load models  489 

Overall, all models presented relatively good performance during training with R2 > 0.78, 490 

RMSE < 10.83 Mg ha-1, MD < 0.17 Mg ha-1 (Fig. 7). The ������� and F
����� components 491 

were more accurately estimated with models, yielding R2 values of 0.88 and 0.71, 492 

respectively, and RMSE of both ~40 Mg ha-1 in the validation (Table 3). On the other hand, 493 

the models estimating components at the lower stratum (�������, �	�����, �������) exhibited 494 

moderate to low performance during validation (R2 < 0.46). The estimates were less accurate 495 

when estimating the surface and herbaceous components in a single model (i.e., �������; R2 = 496 

0.17, RMSE = 6.22 Mg ha-1, MD = 0.31 Mg ha-1) than in separate models; i.e., for �	����� 497 

(R2 = 0.46, RMSE = 2.81 Mg ha-1, MD = 0.12 Mg ha-1) and for ������� (R2 = 0.31, RMSE = 498 

5.22 Mg ha-1, MD = 0.13 Mg ha-1) individually. Differences in the training-validation 499 

performance were higher for ������� and �������.  500 
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 501 

Fig. 7. Training results for estimating surface fuels (�������), herbaceous fuel (�	�����), 502 

surface and herbaceous fuels (�������), shrub (�������), tree (�������) and total fuel 503 

load (F
�����) using Random Forest and GEDI waveform metrics as predictors. R2 = 504 

coefficient of determination; RMSE = root mean square error; and MD = mean 505 

difference.   506 

 507 

Table 3. Cross-validation performance assessment in 500 iterations of models used to 508 

estimate surface fuels (�������), herbaceous fuel (�	�����), surface and herbaceous 509 

fuels (�������), shrub (�������), tree (�������) and total fuel load (F
�����). Values 510 

represent mean ± standard deviation. 511 

Fuel R2 
RMSE MD  

(Mg ha-1) % (Mg ha-1) % ������� 0.31 ± 0.07 5.22 ± 0.21 55.51 ± 2.79 0.13 ± 0.18 4.61 ± 2.92 �	����� 0.46 ± 0.068 2.81 ± 0.2 78.6 ± 6.38 0.12 ± 0.14 10.01 ± 5.46 ������� 0.17 ± 0.064 6.22 ± 0.34 47.49 ± 2.89 0.31 ± 0.28 4.04 ± 2.57 ������� 0.15 ± 0.062 10.55 ± 0.5 113.32 ± 11.09 0.35 ± 0.35 16.01 ± 10.87 ������� 0.88 ± 0.029 13.07 ± 0.67 40.6 ± 3.64 -0.32 ± 0.67 1.51 ± 2.83 F
����� 0.71 ± 0.052 23.01 ± 1.13 40.78 ± 2.4 0.22 ± 0.94 2.09 ± 2.12 
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R2 = coefficient of determination; RMSE = root mean square error; and MD = mean 512 

difference.  513 

3.3 Fuel loads characterization across the Cerrado biome   514 

Fuel load estimates were obtained from the application of the models to the on-515 

orbit GEDI data. The estimates were obtained for the entire Cerrado biome in the 25 516 

m-radii GEDI footprints. In a Cerrado subset (Fig. 8), gradients of fuel load 517 

associated with topography were observed in the different formations. For instance, 518 

there was a pattern of higher ������� and F
����� estimates in forests (Fig. 8 e2 and 519 

f2) than in the other formations (Fig. 8 a2 - d2). On the other hand, �	����� estimates 520 

were significantly higher in grasslands (Fig. 8 a2), mainly when compared to forest 521 

formations (Fig. 8 e2 and f2). The ������� estimates were also higher in forest 522 

formations (Fig. 8 e2 and f2) than in grasslands (Fig. 8 a2).   523 

 524 
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 525 

Fig. 8. Depiction of the GEDI footprint level estimates of fuel components showing 526 

all the GEDI ground-tracks (a1, b1, c1, d1, e1, f1) and a single-track profile over 527 
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grassland, savanna, and forest formations (a2, b2, c2, d2, e2, f2). Estimates were done 528 

for surface fuels (�������), herbaceous fuels (�	�����), surface and herbaceous fuels 529 

(�������), shrubs and small trees (�������), woody fuels (�������) and total fuel load 530 

(F
�����). 531 

 532 

The spatial variation of fuel components estimates in Cerrado is shown in Fig. 9. 533 

These maps allowed us to identify regions in Cerrado with higher estimated �	����� 534 

and lower ������� in some regions (e.g., ~45°W ~10°S, Fig. 9b and d) and regions 535 

with accumulated fuel as in northern Cerrado (e.g., ~45°W ~5°S Fig. 9e). The 536 

distribution of the estimates was mostly evenly distributed except for ������� that 537 

was slightly skewed for higher values, and ������� 1&� F
����� that had higher 538 

frequencies of lower values (Fig. 10 a-f). The mean estimated values of �������, 539 

�	�����, �������, �������, �������, and F
����� were 7.63 ± 1.63, 7.87 ± 1.78, 14.74 ± 1.87, 540 

7.58 ± 1.64, 10.29 ± 9.97 and 28.55 ± 11.4 Mg ha-1, respectively. The uncertainty of the 541 

predictions was similarly distributed across Cerrado (Fig. 11), with a pattern of lower 542 

uncertainty in regions with more GEDI footprints (Fig. S2).  543 

 544 
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 545 

Fig. 9. GEDI-derived large scale fuel load estimates at the 1km grid cell resolution for 546 

the entire Cerrado biome. These estimates were aggregated from the footprint-level 547 

predictions. Surface fuels (������� (a)), herbaceous fuels (�	����� (b)), surface and 548 

herbaceous fuels (������� (c)), shrubs and small trees fuels (������� (d)), woody fuels 549 

(������� (e)), and the total fuel load (F
����� (f)).  550 
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 551 

 552 

 553 

Fig. 10. Distribution of the estimates of fuel load components in Cerrado using GEDI 554 

waveform metrics and Random Forest. Separated models were trained to estimate 555 

surface fuels (������� (a)), herbaceous fuels (�	����� (b)), surface and herbaceous fuels 556 

(������� (c)), shrubs and small trees fuels (������� (d)), woody fuels (������� (e)), and 557 

the total fuel load (F
����� (f)).  558 

 559 
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560 

Fig. 11. Uncertainty of fuel load predictions accounting for the footprints’ variability 561 

within the cell, uncertainty associated with the RF algorithm, and RF lack of fit. 562 

Surface fuels (������� (a)), herbaceous fuels (�	����� (b)), surface and herbaceous fuels 563 
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(������� (c)), shrubs and small trees fuels (������� (d)), woody fuels (������� (e)), and 564 

the total fuel load (F
����� (f)) 565 

4. Discussion 566 

GEDI is capable of providing high resolution 3D canopy structural information of 567 

various forest ecosystems (Dubayah et al., 2020a, Schneider et al., 2020) and holds 568 

untapped potential for establishing effective forest fire management frameworks. 569 

This study demonstrated the potential of using GEDI data to estimate large-scale 570 

multi-layer fuels across the whole Brazilian Cerrado by applying both simulated and 571 

on-orbit data to model commonly used fuel load layers. The use of spaceborne lidar 572 

sensors for fuel mapping has been previously reported mainly to map canopy fuels 573 

with GLAS and ICESat-2 sensors (Ashworth et al., 2010, García et al., 2012, Peterson 574 

et al., 2013, Gwenzi et al., 2016, Narine et al., 2020). However, this is, to our 575 

knowledge, the first study demonstrating the usefulness of GEDI in estimating fuels 576 

loads at such a large geographic scale, contributing to the expansion of spaceborne 577 

lidar applications for integrated fire management activities and supporting carbon 578 

monitoring initiatives in savannas.  579 

4.1. Large scale fuel load estimation using spaceborne lidar 580 

Our results demonstrated a high predictive capacity of GEDI metrics in 581 

modelling ������� and F
����� that allows large-scale fuel load estimations. This 582 

finding is in agreement with similar studies focused on estimating biomass in 583 

different ecosystems using as predictors canopy metrics derived from spaceborne 584 
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lidar sensors on the satellites ICESat-1 and ICESat-2 (Xiao et al., 2019). A study 585 

carried out by Lefsky et al. (2005) in a tropical broadleaf forest in Brazil demonstrated 586 

that GLAS-derived heights were able to explain 73% of the variation in field-587 

measured aboveground biomass. Popescu et al. (2011), who mapped aboveground 588 

biomass in a temperate forest dominated by pine and oak stands in eastern Texas, 589 

found a strong relationship (R2 = 0.80) between GLAS height variables and the 590 

reference biomass derived from airborne lidar data. In a more detailed study to test 591 

the capabilities of GLAS data in predicting forest aboveground biomass, Chi et al. 592 

(2015) estimated R2 values ranging from 0.64 to 0.90 over different forest zones in 593 

China. Nevertheless, it is noteworthy that those studies did not account for 594 

important vegetation layers for fire management and that GLAS yield products at a 595 

coarser resolution (footprints with diameter of 70 m), despite being a full-waveform 596 

lidar as GEDI.  Similarly, by using simulated ICESat-2 photon-counting lidar data, 597 

Narine et al. (2019) models explained 79% of the variation in AGB in a pine-598 

dominated forest. Gwenzi et al. (2016) described some of the limitations of using 599 

ICESat-2 for retrieving vegetation height in structurally complex savannas. They 600 

found that canopy height estimation in areas of low-density vegetation cover may 601 

have lower precision due to the expected number of signal photons in these areas. 602 

The performance of our models also suggests that GEDI can be more appropriate for 603 

this type of vegetation. 604 

Part of the unexplained variance by our ������� models may be due to the lower 605 

sensitivity of GEDI to herbaceous and low stature shrubs compared to the denser 606 
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overstory tree canopies the GEDI mission was designed to map. GEDI’s utility for 607 

mapping short, sparse canopies and understory has yet to be established, and while 608 

the accuracies seen here are likely lower than for closed-canopy forests, or canopy 609 

fuels, our results  suggest that GEDI data are still useful for this more challenging 610 

application. The measurement challenge is largely due to convolution of the 611 

waveform return from the ground and from short vegetation above the ground, 612 

where detecting the vegetation from the waveforms will be more challenging. This 613 

issue will be exacerbated over slopes or when vegetation cover is low, which is often 614 

the case in the Cerrado.  he top portion of small trees and shrub crowns observed in 615 

the waveforms may not show enough canopy cover to register as a significant return 616 

signal and consequently may not be properly detected using the selected metrics.  617 

Although surface, herbaceous and shrub fuels are a key component in fire 618 

behavior and emission models, most previous studies to estimate fuel loads using 619 

spaceborne lidar sensors focused on canopy fuels (García et al., 2012, Peterson et al., 620 

2013). Obtaining information on fuels in low stature and sparse vegetation 621 

ecosystems, such as savannas and grasslands, is more challenging than in dense 622 

vegetation cover (e.g., Popescu et al., 2018). The lower performance for �������, 623 

�	�����, and ������� suggests that spaceborne lidar data interacts with this lower 624 

stratum less strongly than with tree fuels. In fact, surface components are hardly 625 

directly retrieved with lidar measurements (Jakubowski et al., 2013, Hudak et al., 626 

2016b, Price and Gordon 2016, Bright et al., 2017), and it is commonly necessary to 627 

rely on their indirect relationship with other variables, such as canopy structure or 628 
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climate (Hudak et al., 2016a, Mauro et al., 2021). Results in this study demonstrate 629 

that the GEDI waveform metrics could also be used as proxies to indirectly explain 630 

part of the variability of these fuels in savanna ecosystems and underscore the 631 

improvement in modeling �	����� and ������� in separate models rather than a single 632 

model (�������). The difference among �	����� and ������� is indicated by their 633 

contrasting relationships, such as having greater values of ������� in forest 634 

formations (e.g., due to litterfall) and having inverse relationships to CCF and 635 

�	�����. Nonetheless, the dynamics of �	�����and ������� may be more impacted than 636 

������� by plant phenology, seasonality (Costa et al., 2020, Oliveira et al., 2021), and 637 

fire events (Gomes et al., 2020b). Roitman et al. (2018) analyzed decades of AGB 638 

surveys in Cerrado and also demonstrated that environmental factors can help to 639 

explain part of the AGB variation in Cerrado. As more data become available, future 640 

studies could use multitemporal series to exploit the layers’ seasonal structural 641 

dynamics mainly due to leaf flush and fall, in search for more unexplained variance 642 

that might not be obtained otherwise. The complementary use of multispectral 643 

and/or hyperspectral images for better distinguishing photosynthetic- from non-644 

photosynthetic vegetation fractions (e.g., Roberts et a. 2003) coupled to GEDI metrics 645 

might improve the estimation of some surface fuels (e.g., litter, downed wood) in 646 

open-canopy formations and are recommended in future studies.  647 

A multilevel approach by linking field plots, UAV-lidar, and spaceborne lidar 648 

data is the backbone of our methodological framework to produce both large scale 649 

multi-layer fuel load information in Cerrado. The RF models developed using 650 
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simulated GEDI full-waveforms from UAV-lidar have the advantage of not being 651 

affected by waveform geolocation errors that are inherent with GEDI. Currently, 652 

these geolocation errors are around 10-20 m, but are expected to decrease to ~7-8 m 653 

after completed mission calibrations (Dubayah et al., 2020a). This error can make it 654 

difficult to have coincident – in space and time - field and GEDI data for modeling. 655 

Our study is aligned with the simulation approach that has been suitable for GEDI 656 

model development and application (Saarela et al., 2018, Hancock et al., 2019, 657 

Marselis et al., 2019, Patterson et al., 2019, Qi et al., 2019, Schneider et al., 2020, 658 

Dubayah et al., 2020a, Duncanson et al., 2020, Silva et al., 2021). Comprehensive 659 

assessments of the accuracy of on-orbit GEDI data in retrieving key structural 660 

vegetation parameters by synchronizing field measurements within GEDI footprints 661 

may be needed for assessing estimation uncertainty in different scales.   662 

Nevertheless, the models developed with simulated GEDI waveforms can be applied 663 

to the GEDI footprints covering about the entire globe (~52° N and S) providing a 664 

valuable  asset for regional to global forest structure analysis as demonstrated for the 665 

Cerrado.  666 

4.2. Caveats and source of uncertainty 667 

While it may be straightforward to derive vegetation structural metrics in 668 

relatively dense vegetation cover (e.g., Popescu et al., 2018), obtaining such 669 

information in low stature and sparse vegetation formations, such as savannas and 670 

grasslands, is more challenging (Glen et al., 2016, Gwenzi et al., 2016). One of the 671 
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current limitations in our findings concerns the uncertainty of estimating surface and 672 

low stature vegetation fuels. This issue was also described in different studies using 673 

airborne lidar that reported R2 ranging from ~25 – 45% (Jakubowski et al., 2013, 674 

Hudak et al., 2016b, Price and Gordon 2016, Bright et al., 2017). Pesonen et al. (2008) 675 

models had a better performance for estimating downed dead wood volume in 676 

boreal forests, suggesting a higher predictive capacity for this component. 677 

Nonetheless, despite surface fuels being a key component in fire behavior and 678 

emission models, they have received less attention than canopy fuels, particularly 679 

using spaceborne sensors (Garcia et al., 2012, Peterson et al., 2013, Bright et al., 2017). 680 

Tackling this issue may require inclusion of variables related to fuel dynamics such 681 

as time since the last fire (Chen et al., 2017) and precipitation occurrence (Oliveira et 682 

al., 2021).   683 

Another consideration is related to GEDI data characteristics. First, the GEDI 684 

mission is planned to collect data until 2023, limiting application of models to this 685 

time span. Nonetheless, we expect that other missions, such as MOLI (Murooka et al., 686 

2013, Kimura et al., 2017, Asai et al., 2018), will give similar data in the future. The 687 

second point is related to the sampling nature of GEDI. We observed here that when 688 

aggregating footprints to a 1-km2 grid cell there were still some areas not yet covered 689 

(Fig. S3), which can be due to the GEDI orbit missing the cells, or data loss from 690 

cloud cover. Those gaps might be filled with forthcoming dataset updates during the 691 

mission; it is expected that most 1 km2 grid cells will have at least two ground tracks 692 

(Patterson et al., 2019) by the end of the GEDI mission lifetime. The number of 693 



41 

 

required footprints to predict fuel load or AGB density in 1-km² cells may vary due 694 

to the vegetation complexity within the cell, which might need further investigation; 695 

nonetheless we observed an exponential decrease in uncertainty with an increase in 696 

number of footprints (Fig S5). Finally, the impact of terrain characteristics for 697 

detecting ground and retrieving waveform metrics was not covered in this study. 698 

When the within footprint terrain slope is high, the interpretation of the signals is 699 

more complex causing, for instance, ground and canopy energy at the same height 700 

(Harding and Carabajal, 2005, Lefsky et al. 2005). In a study comparing small- and 701 

large-footprint lidar sensors, Silva et al. (2018) also observed an effect of terrain slope 702 

(> 20°) by overestimating ground elevation and RH metrics on large-footprint data, 703 

mainly in dense canopies. For instance, an alternative for GLAS waveforms was 704 

applying topographic correction using ancillary data (Lefsky et al., 2005, Lefsky et al., 705 

2007). Similar effects of topography in the returned GEDI waveform may need to be 706 

investigated and addressed in further studies. 707 

4.3 Future Applications and Challenges  708 

Previous studies of GEDI have focused on deriving products by using the 709 

waveform metrics and its relationships with the vertical structure of the vegetation 710 

(Marselis et al., 2019, Schneider et al., 2020, Duncanson et al., 2020). The quality of the 711 

metrics relies on the accuracy to detect the ground signal which is expected to vary 712 

based on various factors such as canopy cover, GEDI beam energy, weather 713 

conditions and topography. However, apart from the environmental characteristics 714 
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and sensor properties, what determines the ground classification is the algorithm 715 

incorporated. Hancock et al. (2019) described and tested Gaussian fitting along with 716 

the lowest maximum and inflection point algorithms to detect the ground signal and 717 

calculated RH metrics from simulated GEDI waveforms, showing that there might be 718 

differences among them. Further research exploring the impact of ground algorithms 719 

on GEDI metrics associated with fuel load estimation needs to be conducted, ideally 720 

with the study based on individual physiognomies and landscape conditions. 721 

RF was implemented in our study due to its ease of usage, interpretability, 722 

versatility in handling missing data, and prior success with respect to fuel load 723 

estimation and to GEDI-based studies (Healey et al., 2020, Marshak et al., 2020, 724 

Rishmawi et al. 2021). Being an ensemble technique, RF improves the average 725 

prediction performance and is robust to outliers. Techniques such as ordinary least 726 

square regression, lasso logistic regressions and sensitivity analysis, and 727 

combinations of multiple machine learning methods, have also been applied to GEDI 728 

data for quantifying forest traits and structural diversity (Boucher et al. 2020, Burns 729 

et al., 2020, Duncanson et al., 2020, Sanchez-Lopez et al., 2020). More recently, deep 730 

learning-based regression models, e.g., Convolutional Neural Networks (CNN), have 731 

been successfully applied for estimating continuous forest structural parameters such 732 

as AGB (Asner et al., 2018) and canopy height (Lang et al., 2019, Li et al., 2020). For 733 

instance, Li et al. (2020) showed that deep learning slightly outperforms random 734 

forest models in the estimate of canopy height. Therefore, a review of the efficiency 735 

of various statistical modeling techniques for the estimation of disparate forest 736 
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metrics can be deemed to be a critical step for furthering GEDI powered research for 737 

fuel load and AGB modeling and management.  738 

With several planned global missions, such as NASA-ISRO’s NISAR and ESA’s 739 

BIOMASS, offering new capabilities, data fusion of GEDI with these distinct sensors 740 

can compensate for drawbacks such as influence of clouds, atmospheric haze, 741 

multiple scattering, sloped terrain and off-nadir pointing (Pardini et al. 2019, Yang et 742 

al., 2011, Quegan et al., 2019, Rosen et al., 2015). We also encourage readers to take 743 

full advantage of the Multi-Mission Algorithm and Analysis Platform (MAAP) that 744 

hosts a colossal amount of related data, tools, algorithms, and computing capabilities 745 

for performing multi-sensor operations (Albinet et al., 2019). During the initial phase 746 

of GEDI, several studies had explored the possibility of merging GEDI with synthetic 747 

aperture radar (SAR) for improving various forest metrics such as forest height and 748 

other structure attribute mapping and characterization (Qi et al., 2019, Qi and 749 

Dubayah 2016). Adding to this, a study by Silva et al. (2021) highlighted how 750 

integrating NISAR and ICESat-2 with GEDI offer us new opportunities for enhancing 751 

AGB mapping in temperate forests with complex terrain. Similarly, data from 752 

multispectral sensors also hold potential for improving spatial resolution of GEDI 753 

(Potapov et al., 2021). Such multi-sensor data fusion approaches will be important for 754 

developing wall-to-wall maps in applications that require higher spatial resolution 755 

such as fire behavior models (Benali et al., 2016, Saatchi et al., 2007). Data fusion 756 

approaches applicability for estimating large scale forest canopy height, AGB and 757 

past forest disturbances assessment has been already demonstrated (Potapov et al., 758 
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2021, Saarela et al., 2018, Sanchez-Lopez et al., 2020). Ultimately, data integration 759 

from different missions (e.g., NASA’s Landsat 8/OLI and NISAR, and ESA’s Sentinel 760 

2/MSI and BIOMASS) will be necessary for developing wall-to-wall maps with finer 761 

spatial resolutions and for covering regions outside GEDI orbit coverage. 762 

Fuel mapping is one of the most important stages that should be considered in 763 

wildfire prevention and planning (Keane and Reeves, 2012, Agee and Skinner, 2005; 764 

Franke et al., 2018). With the proposed framework it is possible to obtain fuel load 765 

estimates for large areas, such as the Cerrado biome. This is a key point for 766 

advancing on a broad spatial scale understanding of fire effects on ecological 767 

processes, ecosystem functioning, carbon emissions, and fuel dynamics (Turner et al., 768 

1995, Bowman et al., 2013, Gomes et al. 2018, Oliveira et al., 2021). Management 769 

solutions based on integrated fire management initiatives have taken place in 770 

Cerrado conservation areas mainly since 2014 and consider practices of prescribed 771 

burning in mosaics to preserve the fire history of a region (Schmidt et al., 2018). The 772 

fuel components estimate for large areas as developed here will also be an important 773 

resource for this end (Franke et al., 2018, Gomes et al., 2018, Schmidt et al., 2018). 774 

5. Conclusions 775 

In this study we evaluated the capability of GEDI data for estimating large scale 776 

multi-layer fuel loads in a tropical savanna ecosystem. We used the random forest 777 

algorithm fed by GEDI waveform metrics simulated from high-density UAV-lidar 778 

3D point clouds as our modeling approach. To our knowledge, this is the first 779 
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attempt to map different fuel components with GEDI waveform metrics. Overall, the 780 

models had better performance for predicting woody fuels (e.g., ������� and F
�����). 781 

Our results support the expected benefits of using GEDI data for improving models 782 

to estimate vegetation traits on structurally-complex ecosystems. Furthermore, we 783 

were able to upscale from local to biome-level predictions by applying our models to 784 

GEDI data over the entire Cerrado yielding relatively high-resolution fuel load 785 

estimates in this region. Therefore, we expect that users can potentially improve 786 

large-scale fuel load monitoring using the presented framework and extend the 787 

analysis to other fire-prone ecosystems. Following research on data integration of 788 

GEDI data with different sensors is expected for meeting spatial and temporal 789 

requirements of other fire-related applications - such as assessing fuel load dynamics, 790 

modeling fire behavior and calculating carbon emissions - and assist in better 791 

understanding the climate-fire interactions across different landscapes.  792 
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