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A B S T R A C T

The high dimensionality of data generated by Unmanned Aerial Vehicle(UAV)-Lidar makes it dif-
ficult to use classical statistical techniques to design accurate predictive models from these data for
conducting forest inventories. Machine learning techniques have the potential to solve this problem of
modeling forest attributes from remotely sensed data. This work tests four different machine learning
approaches - namely Support Vector Regression, Random Forest, Artificial Neural Networks, and Ex-
treme Gradient Boosting - on high-density GatorEye UAV-Lidar point clouds for indirect estimation
of individual tree dendrometric metrics (field-derived) such as diameter at breast height, total height,
and timber volume. A total of 370 trees had their dbh and height measured for validation purposes.
Using LAStools we generated normalized Light Detection and Ranging (Lidar) point clouds and cre-
ated a raster canopy height model at a 0.5×0.5 m spatial resolution following the construction of a
digital terrain model and a digital surface model. The R package ’lidR’ was set with the functions
tree_detection (local maximum filter algorithm) and lastrees. Subsequently, we applied the function
tree_metrics to extract individual metrics. Machine learning techniques were applied to the derived
metrics to estimate dendrometric field measures. The machine learning models (MLM) with optimal
hyperparameters showed similar predictive performances for modeling the variables diameter, height,
and volume. All models had a rRMSE below 15% (for diameter at breast height), 9% (for height) and
29% (for volume). The Support Vector Regression algorithm showed the best performance. Our
work demonstrates that all tested machine learning models are adequate and robust to handle the high
dimensionality of UAV-Lidar data for the estimation of individual attributes, with Support Vector
Regression model being the best performer in terms of minimal error rates.

1. Introduction

Forest inventories are an integral component of moni-
toring and managing natural resources (Fankhauser et al.,
2018). They are traditionally carried out through intensive
field sampling, aiming to provide managers with an under-
standing of the composition and structure of a forest (Good-
body et al., 2017). In a traditional forest inventory, diam-
eter at breast height (DBH) and total height are the main
variables measured, as they are easier to measure and have
strong relationships with other tree parameters; for exam-
ple, the volume, which is of great importance for managers.
Although traditional forest inventory methods can provide
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highly accurate vegetation parameters, collecting data in situ
is time-consuming and labor intensive, especially for studies
that comprise large scales (Means et al., 2000; White et al.,
2016). Thus, there is a need for alternative or complemen-
tary methods that can overcome the disadvantages associ-
ated with field-survey based data acquisition (Williams et al.,
1994).

In this context, remote sensing technologies provide aux-
iliary and valuable information that can be used to increase
the accuracy and timeliness of forest parameter estimates
(McRoberts et al., 2010; Kangas et al., 2018). Light De-
tection and Ranging (LiDAR) is an active remote sensing
system, which collects ranging data utilizing the speed of
light and information about the flight time of a laser pulse
(Lim et al., 2003), and has emerged as a particularly useful
technology for accurate characterization of forest properties
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at different resolutions. Compared with traditional optical
remote sensing technologies, LiDAR has greater penetra-
tion and is not easily affected by weather conditions; there-
fore, this technology has unique advantages in obtaining for-
est structure information (Wu et al., 2019). Thus, with the
possibility to receive detailed estimates of forest structure
variables, the use of LiDAR in recent years has increased in
forestry.

LiDAR applications have expanded rapidly in the past
two decades to model forest structural attributes (Næsset,
2002; Popescu, 2007; Yu et al., 2011), aboveground biomass
(AGB) (Popescu et al., 2011; Rex et al., 2019), forest fuel pa-
rameters (Kramer et al., 2014), as well as species diversity
(Simonson et al., 2012; Alonzo et al., 2014). In the context
of forest structural attributes, Næsset (2002) using an air-
borne laser scanning (ALS), found greater precision for the
Lorey’s mean height (R2 = 0.82-0.95), followed by the mean
diameter at breast height (DBH) (R2 = 0.39-0.78) and vol-
ume (R2 = 0.80-0.93). Popescu (2007), estimated the DBH
of individual trees through regression analysis, using the
LiDAR-derived height and crown diameter measurements.
The findings showed a small RMSE of 4.9cm, which was
approximately 18% of the dbh mean of all measured trees,
with an R2 value of 0.87. Yu et al. (2011) proposed an ap-
proach to predict forest attributes at the individual level using
data from airborne LiDAR. They proposed a new detection
method to find individual trees along with random forests as
an estimation method. Correlation coefficients between the
observed and predicted values of 0.93, 0.79 and 0.87 for indi-
vidual tree height, DBH and stem volume, respectively, were
achieved, based on 26 laser-derived features. Despite intense
research efforts, operational applications of airborne LiDAR
are wide conditioned on area-based approach (ABA), mainly
due to the insufficient amount of pulses per square meter ob-
tained by these systems, and also by specific techniques such
as linear regression and random forest. In addition, the cur-
rent high cost of ALS data has also limited their applica-
tions in small (up to 4 ha) and medium (4-400 ha) projects
(Næsset, 2004; Reutebuch et al., 2005; Hudak et al., 2006;
Belmonte et al., 2019).

However, there has been a significant increase in the use
of unmanned aerial vehicles (UAVs) for forestry inventory
applications due to their relative low cost, automation fea-
tures, and considering the fact that they can support vari-
ous types of useful sensors, such as visual, or multispectral
cameras, LiDAR and radar (Morales et al., 2018). Also,
when compared to traditional airborne LiDAR (a.k.a, Air-
borne Laser Scanning - ALS), UAV-Lidar data acquisitions
provide much higher point densities (Morsdorf et al., 2017;
Wieser et al., 2017), which allow the recovery of single
tree-level forest inventory parameters (Wallace et al., 2014;
Wieser et al., 2017; Corte et al., 2020). However, there is
still a challenge in modeling the obtained high-density data.
In many studies with a predictive focus using LiDAR data,
the approach used involves selecting independent variables
through their explanatory capacity for the dependent vari-
able of interest (Silva et al., 2014; Mauro et al., 2017). Also,

it is common to apply correlation tests to select indepen-
dent variables for modeling the best parameters (Miura and
Jones, 2010; Stark et al., 2012; Taylor et al., 2015; Zhang
et al., 2017). In other situations, stepwise regression analy-
sis (Means et al., 2000) or multiple regression analysis tech-
niques (Næsset and Bjerknes, 2001; Næsset, 2002, 2004) are
applied to determine the best predictive models. In such
cases, it is common to face the problem of multicollinearity
between predictor variables derived from the point cloud, of-
ten indicated by the statistical variance inflation factor (VIF)
and multidimensionality, which imposes challenges to statis-
tical modeling (Adam and Mutanga, 2009; Dalponte et al.,
2009; Laurin et al., 2014; Junttila et al., 2015; Venier et al.,
2019).

Evaluating new approaches to predictive modeling is im-
portant in the search for more accurate models and for over-
coming problems common to the conventional multiple re-
gression techniques, such as multicollinearity. This is a re-
current situation between predictor variables derived from
Lidar point clouds. In addition, a large amount of data (500-
1,500 or more points m−2) and the high dimensionality of the
resource space generated by UAV-Lidar are intrinsic char-
acteristics that encourage the use of machine learning tech-
niques. Recently, a new culture of statistical modeling -
machine learning - has gained momentum and has been ap-
plied to solve challenging issues in several areas of science
and technology. Unsurprisingly, it has shown great poten-
tial for modeling forest attributes from remotely sensed data
that exhibit complex interactions (McRoberts, 2012; Val-
buena et al., 2016; Jordan and Mitchell, 2015). Although
there are several algorithms within the machine learning do-
main, Artificial Neural Networks (ANN) has been one of
the most widely used in terms of forest modeling research,
in addition to Support Vector Machine - SVM (Nieto et al.,
2012; Montaño et al., 2017). K-nearest neighbors algorithm
(k-NN) is another algorithm that has gained prominence,
specifically for its high performance in predicting variables
such as carbon stock, biomass, and volume (Fehrmann et al.,
2008; Sanquetta et al., 2013, 2018; Souza et al., 2019; Knapp
et al., 2020). Moreover, various modifications of machine
learning techniques - such as deep learning - in combina-
tion with remotely sensed data have been recently used for
moisture content estimation (Villacrés et al., 2019; Arevalo-
Ramirez et al., 2020), tree abnormality detection (Nguyen
et al., 2020), forest species classification and identification
(Olschofsky and Köhl, 2020; Xi et al., 2020) and tree crown
delineation (Wan Mohd Jaafar et al., 2018; Weinstein et al.,
2020).

Predictive modeling using machine learning techniques
can offer advantages over conventional regression. For ex-
ample, the approach does not require the a priori specifica-
tion of functional forms describing the predictive relation-
ship(s) and the response variable (Fehrmann et al., 2008).
They can also be superior, like artificial neural networks
(ANNs), due to their ability to overcome several problems
in forest data, such as nonlinear relationships, non-Gaussian
distributions, multicollinearity, outliers and noise in the data
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(Diamantopoulou and Milios, 2010). Additionally, they ad-
mit variables of different natures and tend to work better for
multidimensional data. A potential approach to providing
more accurate estimates in forest inventories would be to
combine high-density point data and machine learning tech-
niques, which could provide information at the individual
tree level.

Even though the use of machine learning techniques is
prevalent nowadays, similar research on deep learning mod-
els (LeCun et al., 2015; Schmidhuber, 2015) with a focus
on individual tree-level modeling is scarce. In the scien-
tific community, there are few works that address different
machine learning techniques applied to LiDAR data in the
context of the precise forest inventory, and most of them are
focused on ABA. In addition, work from LiDAR data gener-
ally employs low or medium pulse density in its collection.
Therefore, alternatives to address this problem need to be
developed and tested. Thus, we intend to test the potential
of four machine learning techniques to predict variables at
the individual tree level through high-density pulse clouds
collected from a UAV-LiDAR system.

2. Material and Methods

In this section we describe the collection mechanisms
and processing of UAV-Lidar data obtained from GatorEye
Unmanned Flying Laboratory and a brief review of the four
machine learning techniques used to model biometric vari-
ables (dbh, ht, Vol) from individual trees. In addition, we de-
scribe the hyperparameter tuning process of the algorithms,
the selection metrics and model comparison strategy, as well
as mechanisms to assess the importance of predictors.

2.1. Study Site
Study site is located within Fazenda Canguiri, which be-

longs to Federal University of Paraná (UFPR), in the munic-
ipality of Pinhais, Paraná state, southern Brazil, in the lati-
tude 25º24’03.48” South and longitude 49º07’08.54” West.
The regional climate is classified as Cfb (humid subtropi-
cal with oceanic climate, without dry season and temper-
ate summer), characterized by oceanic climate without a dry
season, with a temperate summer, an annual average temper-
ature of 17 °C (20.5 °C in January and 13 °C in July) and an
annual rainfall of 1,550 mm, which is slightly concentrated
in the warmest months, December to February. The driest
months are July and August (Alvares et al., 2013). The site
of study is part of a project called NITA (Center for Techno-
logical Innovation in Agriculture) (Fig. 1) is currently run,
which has a forest plantation with approximately 17 hectares
and corresponds to an iCLF system (integration of crop, live-
stock and seminal forest plantations of Eucalyptus benthamii

Maiden et Cambage). The planting occurred in September
2013 by a contour line and had a spacing of 2×14m (357
individuals.ha−1) (Porfírio-da Silva et al., 2010).

2.2. LiDAR Data Collection
UAV-Lidar data were collected using the GatorEye Un-

manned Flying Laboratory (www.gatoreye.org) ‘Generation

2’, in October 2019. The GatorEye Gen2 system comprised
a modified Phoenix Scout Ultra system, which incorporates
a STIM Inertial Measurement Unit (IMU), an L1/L2 GNSS
receiver, an SSD hard drive, and a Velodyne 32c Ultra Puck.
The Ultra Puck has 32 individual lasers, each with a range
of up to 220 m, and which are installed to provide an along-
track field of view (FOV) of 40 degrees while collecting a
full 360 degrees of cross-track data. The GatorEye Gen2
system also incorporated high-resolution visual and hyper-
spectral sensors, which were not used in this present study.
The final LiDAR point cloud is based on a post-processed
kinematic (PPK) flight trajectory produced using the Gator-
Eye GNSS data fused with the IMU accelerometer and gyro
data in Novatel Inertial Explorer software, and which com-
bined with the Puck per-point laser angle and ranging infor-
mation enables a final point cloud absolute spatial accuracy
of approximately 5 cm RMSE (Wilkinson et al., 2019). To
further maximize point cloud accuracy, we limited returns to
a maximum distance of 100 meters from the sensor, and to an
angular field of view (FOV) maximum of 120 degrees. The
mission plan also flew slow (8 m/s) and low (45 m above-
ground level), and with flight lines tightly spaced (15 meters
apart), resulting in a sidelap cross-swath coverage of 93%.
The final point density was 1500-2500 pts m−2. Data col-
lection and point cloud specifications are further described
in Corte et al. (2020).

2.3. Field Data
Forest census data of our study area were collected

shortly after the Lidar flights (October 2019). A total of 370
trees had their dbh (diameter at breast height) and total height
(ht) measured by a measuring tape and a Haglöf Vertex IV
hypsometer, respectively. The tree locations were obtained
using a Garmin GPS receiver, model 62CSX.

The individual tree volume (Vol) was calculated for each
tree by fitting a polynomial taper equation (Prodan, 1965)
(5th-degree; Eq. 1) and applying the corresponding volume
equation (Eq. 2, developed from 12 trees cut and cubed by
the Smalian formula.
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Where: vt - the total volume in m3; dbh - the diameter
at breast height (cm); hi - the height at which the user de-
sires a diameter prediction; di - diameter at height hi on the
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Figure 1: Study area, 17 hectares of Eucalyptus plantation at Canguiri Site in Pinhais City, Paraná State, Brazil. (a) Tree
location; (b) DSM - Digital Surface Model; (c) DTM - Digital Terrain Model; (d) CHM - Canopy Height Model.

tree; ht - the total height or stem height; �0=1.194915; �1=-
3.802747; �2=15.859004; �3=-34.711086; �4=32.905061;
�5=-11.432145.

2.4. Lidar data and processing
The Lidar data processing and analysis were performed

in an R environment (Version 3.6.1) (R Core Team, 2019)
and Rstudio (Version 1.2.5001), using the functions of the
LAStools software (Isenburg, 2019). First, we classified
the ground returns and generated the digital terrain model
(DTM). Then, we applied a spurious-return filter and gen-
erated the raster digital surface model (DSM). Based on
the DTM, we generated the terrain-normalized Lidar point
cloud, and the canopy height model (CHM). The CHM and
the normalized point cloud were then clipped to the planta-
tion’s extent. All rasters were generated at a 0.5×0.5m spa-
tial resolution.

To process the data, we applied: (1) the tree_detection
function of the ‘lidR’ package using the local maximum filter
(lmf) algorithm, as described by Popescu and Wynne (2004),
for locating the position of trees; (2) the lastrees function,
along with an algorithm for segmenting tree crowns known
as dalponte2016, based on the Dalponte and Coomes (2016)
algorithm; this function was used for segmenting individ-
ual tree crowns; and (3) the function tree_metrics to extract
the point cloud metrics associated with each sequential tree
number (called in this paper: treeID). The metrics evaluated

are described in Tab. 1. Furthermore, a spatial join was per-
formed with field data for accurate alignment of trees and
comparisons of their respective derived metrics with real
values of dbh, ht, and Vol.

2.5. Machine Learning Algorithms
In this study, four machine learning algorithms were

tested to predict the three field-derived dentrometric met-
rics (dbh, ht, and Vol). The machine learning algorithms
were also implemented using the R environment: Support
Vector Regression (‘kernlab’ package) (Karatzoglou et al.,
2004), Artificial Neural Networks (‘nnet’ package) (Ven-
ables and Ripley, 2002), Random Forest (‘randomForest’
package) (Liaw and Wiener, 2002), and Extreme Gradient
Boosting (‘xgboost’ package) (Chen et al., 2019). In the fol-
lowing subsections, a brief description of the algorithms and
their adjustment hyperparameters are presented.

2.5.1. Support Vector Regression

The method traditionally known as Support Vector Re-
gression (SVR) (Kavaklioglu, 2011) was proposed by Vap-
nik 1995 as an extension to the traditional SVM algorithm,
which is also referred to as the �-SV algorithm (Torgo,
2017). The basic idea behind the �-SV algorithm is to find
an f (x) function that has at most � deviations from the real
values yi of the training set and, at the same time, as linear
as possible (Smola and Schölkopf, 2004). In the R environ-
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Table 1

Metrics extracted from the “tree_metrics” function for each tree.

Notation Description

zmax maximum height
zmean mean height
zsd standard deviation of height distribution

zskew skewness of height distribution
zkurt kurtosis of height distribution

zentropy entropy of height distribution (see function entropy)
pzabovzmn percentage of returns above zmean
pzabov2 percentage of returns above x

zq(x=5,...,95) range=5 xth percentile (quantile) of height distribution
zpcum(x=1,...,9) range=1 Cumulative percentage of return in the xth layer, according to Woods et al. (2008)

p(x=1,2)th percentage xth returns

ment, the �-SV version is available in the ‘kernlab’ package
(Karatzoglou et al., 2004). In this study, we chose the radial-
based kernel function, and two hyperparameters were tuned:
C (cost of violation of restrictions) and sigma (kernel param-
eter of radial basis).

2.5.2. Artificial Neural Networks

“Multilayer Perceptron” (MLP) networks are among the
most used networks in several fields of science. In general
terms, the MLP network consists of three types of layers:
an input layer, one or more hidden (or intermediate) layers,
and an output layer (Fath et al., 2018). The most common
architecture for an MLP is “completely connected”, that is,
all neurons in a layer C are connected to all other neurons
in the layer C+1. Assuming that C is the first hidden layer,
each C neuron is connected to all attributes of the predic-
tor space (Gama et al., 2015). The ‘nnet’ package (Venables
and Ripley, 2002) was used to train “feed-forward” single-
layer MLP networks. Two hyperparameters were tuned: size

(number of neurons in the hidden or intermediate layer) and
decay (weight decay rate). The ANN model differs from tra-
ditional methods in that it uses several neurons in parallel to
model a specific relationship.

2.5.3. Random Forests

The Random Forests (RF) algorithm was proposed by
Leo Breiman in 2001 (Breiman, 2001). The algorithm con-
stitutes a substantial modification of the bagging algorithm,
one of the first ensemble algorithms developed and proposed
by Leo Breiman in 1996 (Breiman, 1996). The main objec-
tive of Random Forests is to build a collection of “uncorre-
lated trees” and then average individual predictions in case
of regression (Hastie et al., 2016). Thus, the main differ-
ence between bagging and Random Forests is the choice of
k size (number of predictors) in the original predictor space
(James et al., 2013). The ‘randomForest’ package (Liaw and
Wiener, 2002) was used to build the models; two hyperpa-
rameters were tuned: mtry (number of trees to grow) and
ntree (number of predictors used in the construction of each
tree).

2.5.4. Extreme Gradient Boosting

The Extreme Gradient Boosting (XGBoost) algorithm
has been widely used by data scientists to achieve excel-
lent results in machine learning challenges, such as ‘Kaggle’
competitions. The algorithm was developed by Chen and
Guestrin (2016) and constituted an efficient and scalable im-
plementation of the framework Gradient Boosting Machine.
In the R environment, XGBoost can be accessed through
the ‘xgboost’ package (Chen et al., 2019) and numerous hy-
perparameters were available for tuning: eta (learning rate),
max_depth (maximum tree depth), min_child_weight (min-
imum sum of the required instance weight on a child node),
subsample (fraction of randomly selected training set in-
stances), colsample_bytree (proportion of column subsam-
ples to build each tree), gamma (minimum loss reduction
required to make an additional partition in a tree node), and
nrounds (number of trees to be grown).

2.6. Hyperparameter Tuning Process
The machine learning models were trained using the

CARET package interface (Classification and Regression
Training), a framework available for classification and re-
gression tasks (Kuhn et al., 2016). Before the model learn-
ing process, the data set was divided into training (70%) and
testing (30%) using stratified sampling based on tree diame-
ter.

A common approach to estimate the expected perfor-
mance of a machine learning model is to use some method
for resampling the original data (Kuhn and Johnson, 2013).
The tenfold cross-validation method was applied using the
training set to obtain performance estimates of predictive
models (Fig. 2). The final performance of each model was
obtained by calculating the arithmetic mean of estimates in
k cross-validation partitions. After determining the optimal
hyperparameter tuning for each algorithm, the models were
fit to the training set. Then, the performance of the mod-
els was evaluated on a test set with data not used in learning
the predictive models. Before the process of model learning,
the “center”, “scale”, and “BoxCox” methods were applied
to transform predictors.

APD Corte et al.: Preprint submitted to Elsevier Page 5 of 16



Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes

Figure 2: Representation of the k-fold cross-validation method performed.

Table 2

Candidate hyperparameters for each machine learning algorithm and libraries used for
modeling field-derived dendrometric metrics (dbh, ht, and Vol).

Algorithm Variable Hyperparameter variants Method/package Author

C = 2ˆ(-2,-1,0,1,2,3,4,5,6,7,8,9,10)
dbh

sigma = seq(0.0001, 0.0005, 0.0001)

C = 2ˆ(-2,0,2,4,5)
ht

sigma = seq(0.0001, 0.009, 0.0001)

C = 2ˆc(-2,0,2,3,4,5,6,7,8,9,10)

Support Vector Regression (SVR)

vt
sigma = seq(0.0001,0.009,0.0001)

svmRadial/kernlab Karatzoglou et al. (2004)

Artificial Neural Network (ANN)

dbh, ht
size = seq(1,15,1)

nnet/nnet Venables and Ripley (2002)
decay = seq(0.1,1,0.1)

vt
size = seq(1,20,1)

decay = seq(0.001,0.01,0.001)

mtry = c(1:35)
Random Forest (RF) dbh, ht, vt

ntree = c(50,100,150,200,300,400,500)
rf /randomForest Liaw and Wiener (2002)

Extreme Gradient Boosting (XGBoost) dbh, ht, vt

nrounds = seq(200,1000,50)

xgbTree/Xgboost Chen et al. (2019)

eta = seq(0.01,0.07,0.01)

max_depth = (1:5)

gamma = c(0,1,10)

colsample_bytree = seq(0.1,1,0.1)

min_child_weight = seq(5,50,5)

subsample = seq(0.1,1,0.1)

In general, machine learning algorithms have specific
hyperparameters that must be tuned to find the best predic-
tive performance setting. Here, the grid search strategy was
used. A grid of candidate hyperparameters was defined for
each machine learning algorithm. The hyperparameter vari-
ants used for the design of machine learning models, as well
as the respective packages (Tab. 2).

2.7. Model selection and importance of predictors
The performance of designed predictive models was

evaluated using the metrics: Relative Root Mean Square Er-
ror (RMSE), Relative Root Mean Square Error (rRMSE),
Coefficient of Determination (R2), Mean Absolute Error
(MAE), and Bias (Kvålseth, 1985; Pretzsch, 2009; Kuhn and

Johnson, 2013; Chai and Draxler, 2014; Tanaka et al., 2015).
The Pearson’s correlation coefficient (r) was used to quan-
tify the correlation between the observed and the predicted
values for each predictive model (Zhang et al., 2015). An r

value of 1 indicates a perfect correlation between predicted
and observed values.

The Bland-Altman (B-A) method was used to assess the
difference in performance between machine learning models
(MLMs) with optimal hyperparameter tuning based on the
estimates of the RMSE metric in the cross-validated paired
partitions. In practical terms, the B-A method assesses
the degree of agreement between two quantitative measures
(Altman and Bland, 1983; Bland and Altman, 2010). B-A
statistics were calculated using the “blandr” package (Datta,
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2017). The method allows estimating bias (or average dif-
ference between models) and limits of agreement (limits and
upper), which can be estimated by d̄ ± 1.96 ∗ sd, where: d̄
= average difference or bias; sd = standard deviation of the
differences between methods. Confidence intervals (CI) for
bias and limits of agreement are also estimated. The closer
the mean difference (bias) is to zero, the better the agree-
ment between the measures will be (Hirakata and Camey,
2009; Odor et al., 2017).

In order to better understand (and/or interpret) the built
machine learning models, the relative importance of predic-
tors was calculated using the DALEX framework (Descrip-
tive Machine Learning Explanations). This library has a col-
lection of functions that aim to assist in providing explana-
tions of predictive models (Biecek, 2018). Therefore, charts
of the importance of predictor variables were plotted.

3. Results

In general, machine learning models, with the optimal
hyperparameters tuning (machine learning models, MLMs),
showed high predictive performance to modeling the three
dependent variables (dbh, ht, and Vol) (Tab. 3). The im-
plemented models showed an rRMSE below 15%, 9%, and
29% for the estimate of dbh, ht, and Vol, respectively. The
MLMs built using the SVR algorithm showed the lowest
rRMSE, MAE, and MAD values. Regarding the stepwise
linear regression (SLR), the SVRs models showed a better
performance for predicting the diameter, height and volume,
with a reduction of approximately 0.85%, 0.65% and 1.5%,
respectively, in the average of rRMSE estimated in the cross
validation. The increase in the accuracy of machine learning
models was small when compared to the SLR method. Even
so, the modeling of biometric variables from the combina-
tion of high-density UAV-Lidar data and machine learning
techniques can be considered very promising.

In this study, several metrics derived from UAV-Lidar
clouds showed high linear correlation. We observed that the
metrics that describe the percentiles of the height distribu-
tion (from zq = 35 to zq = 95) showed positive correlations
between themselves and also with the metrics: zsd, zmean
and zmax. Pearson’s correlation coefficient between these
predictors was greater than 0.75, with almost perfect corre-
lations (Fig. 7, Appendix A). The SLR algorithm estimated
final models with a large number of metrics and the vast ma-
jority of them with high collinearity. The Variance Inflation
Factor (VIF) statistic indicated severe multicollinearity (VIF
> 10) for the final models estimated by SLR. The variables
selected by SLR modeling for each model, the coefficients
significance and the VIF statistics can be found in Table 4 in
the Appendix A.

Evaluating the resampling distributions of the statistical
models is particularly useful to know their stability in pre-
dicting the average response in future observations. There-
fore, boxplot graphs can be developed here to provide a good
comparison of the distribution of cross-validation estimates
(RMSE) among machine learning models with an optimal

hyperparameter tuning (Fig. 3). In general, for the dbh vari-
able, the RMSE averages among SVR, RF, and XGBoost
models were similar, but the variance was higher for RF
(CV = 16.89%). The other models showed a variation coef-
ficient lower than 15%. For the variable ht, the ANN model
showed less variance (CV = 12.71%), but the mean RMSE
was higher. The MLMs for the variable volume had simi-
lar averages. The SVR (19.42%) and ANN (18.81%) models
had greater dispersion in resampling and were influenced by
influential points (outliers).

The Bland-Altman graph was used to compare MLMs
designed using the SVR algorithm that had the lowest
rRMSE (Fig. 4). The bias estimates were not considered
significant, and the equality line was within the confidence
intervals of the average difference in most cases. In addi-
tion, most differences between models were within the lim-
its of agreement (d̄ ± 1.96 ∗ sd), and the normality of dif-
ferent distributions was admitted through the Shapiro-Wilk
test (�= 0.05). Therefore, there is evidence to admit that the
statistical models have a consistent average predictive per-
formance.

The relative importance of predictors (threshold ≥ 80%)
for MLMs with a lower rRMSE for each modeled variable is
available in (Fig. 5). The “zmean” predictor (mean height)
showed a greater relative importance in SVR models de-
signed to predict the variables dbh and volume. On the other
hand, “zmax” (maximum height) was the most important
predictor for the SVR model learned to predict tree height. In
general, the percentiles of height distribution provided good
information for MLM training. However, lower percentiles
(zq5 to zq20) seemed to provide less relevant information.

The MLMs with optimal hyperparameter tuning were
evaluated in the test set (n = 98). In general, MLMs showed
similarity in the residual distribution and in the estimation
of average performance to predict the variables dbh, ht, and
Vol in future samples. The performance of the models in the
test set (Fig. 6) is compatible with cross-validation estimates
and confirms the similar predictive capacity of the models,
as evidenced by the Bland-Altman method.

4. Discussion

We examined the performance of four machine learn-
ing approaches using high-dimensional UAV-Lidar data for
the estimation of structural forest attributes at the individ-
ual level in eucalyptus stands in southern Brazil. The per-
formance of each approach was compared and rated based
on RMSE, R² and Bias to select the most appropriate model.
Our findings demonstrated that machine learning models are
adequate and robust enough to handle the high dimension-
ality of UAV-Lidar data and are able to estimate the den-
drometric metrics at the individual level. With the fast de-
velopment of remote sensing technologies and given the ap-
plicability of state-of-the-art statistical analysis methods on
UAV systems derived data, it is possible to examine forest
structural attributes with high accuracy (Dandois and Ellis,
2013; Wallace et al., 2014). In our study, we examined three
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Table 3

Optimal hyperparameter tuning and average performance estimate in cross-validation for
machine learning models and stepwise linear regression built using high-density UAV-Lidar
GatorEye data.

Model Hyperparameter tuning Statistics
Tenfold cross-validation

RMSE rRMSE MSE r R2 MAE Bias%

Diameter (cm)

Mean 3.973 14.049 15.967 0.561 0.337 3.148 0.196
SLR See Tab. 4 (Appendix A)

Sd. 0.449 1.572 3.718 0.159 0.183 0.342 2.824

ANN
size = 1 Mean 4.1695 14.7416 17.6921 0.5009 0.2819 3.2728 -0.051

decay = 0.6 Sd. -0.5846 -2.0321 -4.9087 -0.1855 -0.1869 -0.3722 -2.0373

mtry = 6 Mean 3.7559 13.2772 14.469 0.6244 0.4076 3.02 -0.0019
RF

ntree = 150 Sd. -0.6345 -2.2029 -4.6873 -0.1404 -0.1678 -0.5091 -2.2963

SVR
sigma = 0.0011 Mean 3.7343 13.1992 14.2253 0.6195 0.4037 2.9475 0.0919

C = 64 Sd. -0.558 -1.9168 -4.1617 -0.1489 -0.1808 -0.4129 -1.8501

nrounds = 250

eta = 0.02

max_depth = 1

gamma = 1 Mean 3.7872 13.3942 14.6083 0.626 0.4062 3.0247 -0.5581

colsample_bytree = 0.4 Sd. -0.5429 -1.9317 -4.1065 -0.1263 -0.1658 -0.4496 -2.1034

min_child_weight = 5

XGBoost

subsample = 0.4

Total height (m)

Mean 1.58 8.348 2.52 0.8 0.645 1.225 0.162
SLR See Tab. 4 (Appendix A)

Sd. 0.162 0.905 0.507 0.08 0.131 0.151 1.722

ANN
size = 1 Mean 1.5534 8.21 2.4481 0.82 0.6763 1.2381 -0.2629

decay = 0.9 Sd. -0.1975 -1.1076 -0.588 -0.0663 -0.1108 -0.1633 -1.9155

mtry = 3 Mean 1.506 7.9597 2.3277 0.8208 0.6799 1.2069 0.0623
RF

ntree = 100 Sd. -0.2574 -1.4093 -0.7523 -0.0829 -0.1374 -0.1909 -1.4136

SVR
sigma = 0.0006 Mean 1.4581 7.7048 2.1706 0.8328 0.6983 1.1491 0.1487

C = 32 Sd. -0.2221 -1.2121 -0.646 -0.0726 -0.1223 -0.1687 -1.7867

nrounds = 850

eta = 0.02

max_depth = 1

gamma = 0 Mean 1.5055 7.9564 2.3087 0.8256 0.6863 1.2011 -0.0805

colsample_bytree = 0.1 Sd. -0.2166 -1.1966 -0.6467 -0.0725 -0.1218 -0.1405 -1.6024

min_child_weight = 5

XGBoost

subsample = 0.9

Volume (m3)

Mean 0.15 28.24 0.023 0.659 0.455 0.116 0.588
SLR See Tab. 4 (Appendix A)

Sd. 0.026 4.12 0.007 0.154 0.198 0.021 6.96

ANN
size = 1 Mean 0.1539 28.9764 0.0244 0.6411 0.4351 0.1206 0.1296

decay = 0.005 Sd. -0.029 -4.8342 -0.0083 -0.1637 -0.2 -0.0218 -6.3006

mtry = 1 Mean 0.1457 27.435 0.0219 0.6764 0.4749 0.115 0.6279
RF

ntree = 150 Sd. -0.0262 -4.2859 -0.0072 -0.1387 -0.1869 -0.01978 -5.7806

SVR
sigma = 0.0029 Mean 0.1422 26.7408 0.0209 0.6908 0.4928 0.1088 -2.0909

C = 4 Sd. -0.0277 -4.558 -0.0071 -0.1312 -0.1764 -0.0222 -5.0925

nrounds = 250

eta = 0.01

max_depth = 2

gamma = 0 Mean 0.1447 27.2792 0.0214 0.6951 0.4957 0.1142 -0.121

colsample_bytree = 0.2 Sd. -0.0229 -3.714 -0.0064 -0.1183 -0.1521 -0.016 -5.9603

min_child_weight = 15

XGBoost

subsample = 0.7

Where: Sd. = Standard deviation.
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Figure 3: Distribution of resampling estimates of RMSE for machine learning models with the optimal hyperparameters tuning
using high-density UAV-Lidar GatorEye data. Vertical bars (blue) represent Q1 - 1.5*IQR and Q3 + 1.5*IQR; the red cross
represents the average performance of the models in resampling. Black points are outliers. ANN = Artificial Neural Networks;
SVR = Support Vector Regression; XGBoost = Extreme Gradient Boosting; RF = Random Forest.

of the most commonly used parameters in forest data model-
ing projects - dbh, total height, and volume at an individual
tree level.

In the case of SLR, after the execution of the algorithm,
it is expected that highly collinear predictors are excluded
from the final regression model, since the addition of a
collinear metrics does not improve the model’s ability to ex-
plain. However, in this study, those models that used SLR
incorporated highly correlated variables and, therefore, pre-
sented severe multicollinearity, with Variance Inflation Fac-
tors (VIF) greater than 10. The most serious effect of multi-
collinearity is the increase in standard errors of the estimated
parameters (Alin, 2010) and, consequently, the confidence
intervals associated with the coefficients that tend to be
broader (Gujarati and Porter, 2011). Some research suggests
that ML techniques can be robust in the presence of multi-
collinearity, for example, artificial neural networks (RNAs)
and support vector machines (SVM) (Kotsiantis et al., 2007;
Kang et al., 2015). Kotsiantis et al. (2007) state that ANN
and SVM perform well when multicollinearity is present and
there is a non-linear relationship between the covariates and
the response variable. Drake et al. (2006) modeling ecolog-
ical niches with support vector machines expose that useful
information can be obtained by adding more environmental
variables, even if they are highly correlated. Therefore, al-
though the ML approaches used in this study can be robust
to correlated metrics, the impacts of variable selection (or
elimination of highly correlated metrics) and the use of di-
mensionality reduction techniques are interesting aspects to
be addressed in future research.

Among the factors that affect the estimates generated,
selecting an ideal modeling approach is one of the most im-
portant steps in most cases (Fassnacht et al., 2014). Re-

garding the performance of the machine learning approaches
tested here, we noticed that the models presented a very sim-
ilar performance for the studied variables (Adj-R2 = 0.28-
0.69, rRMSE = 7.70-28.97%, were: Adj-R2 = Adjusted R-
Squared). The total height showed the smallest difference
(ΔAdj-R2 = 0.02, Δr RMSE = 0.51%), while volume and
diameter showed greater differences. Thus, the results of
the models showed that the total height estimate (r = 0.83,
rRMSE = 7.70%) had the highest precision, followed by vol-
ume (r = 0.69, rRMSE = 26.74%) and dbh (r = 0.61, rRMSE
= 13.19%). Despite a very close performance among the
tested algorithms in terms of rRMSE and correlation coeffi-
cient (r), we found that SVR presented the best performance
among all approaches. This algorithm presented the most
appropriate statistics to generate estimates with fewer errors
for all variables. We also noticed that ANN was not able to
explain the behavior of dbh. It presented the worst perfor-
mance among ML approaches in terms of r and R2.

When comparing our approach with that of recent pub-
lications, we noticed that there is a trend and a wide discus-
sion in the application of machine learning modeling (Dong
et al., 2019; Hernando et al., 2019; Marrs and Ni-Meister,
2019; Malek et al., 2019). Despite this tendency to use more
flexible approaches in relation to traditional methods, we
also realize that most studies have focused on above-ground
biomass (AGB). Only a few studies have aimed to further
develop individual-level approaches for structural parameter
estimates. Along this line, our estimated results for stem vol-
ume and dbh can be deemed very promising for individual
tree modeling. Yu et al. (2011) reported that an estimate of
stem volume and dbh in an area of boreal forest was achieved
with a relative RMSE of 38% and 21%, respectively, in the
best cases, based on 26 laser-derived characteristics. Malek
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Figure 4: Bland-Altman method for analysis of agreement between machine learning models with optimal hyperparameters
tuning using high-density UAV-Lidar GatorEye data. Bias = mean difference for RMSE between two machine learning models
(horizontal red dotted line); Lower LOA = Lower limit of agreement; Upper LOA = Upper limit of agreement; hatched regions
= 95% confidence interval for Upper LOA (red), Lower LOA (green) and bias (gray). ANN = Artificial Neural Network; SVR =
Support Vector Regression; XGBoost = Extreme Gradient Boosting; RF = Random Forest.

et al. (2019) used SVR and RF to predict dbh and AGB at the
Individual Tree Crown (ITC) level using metrics extracted
from ALS data and achieved the best results using the SVR
algorithm for both variables studied, which is in line with the
results presented here. However, our findings show an im-
provement in RMSE compared to those authors’ approaches.
In the best of our cases, SVR presented an RMSE of 3.73cm
for dbh (Tab. 3) while for Malek et al. (2019), the best re-
sult was 4.93cm, a difference of approximately 1.2cm in dbh
estimates.

Because SVR has the best performance among machine
learning models, we selected this model for the analysis of
other factors that may be interesting from the point of view
of designing a more robust model. Regarding the most im-
portant variables in the design of machine learning models
(Fig. 5), SVR identified average height as the most important
variable for modeling volume and diameter variables, while

for the total height, the model identified maximum height
as the most important variable, which was already expected
since Hmax represents the total height of trees. These find-
ings agree with previous studies when relating them to esti-
mates of structural variables of forests based on LiDAR data
(Popescu et al., 2003; Heurich and Thoma, 2008; Ioki et al.,
2010). It is also interesting to note that the average height
metric (especially high percentiles) has shown in previous
studies to be a reliable proxy for forest properties, such as
above-ground biomass (Fassnacht et al., 2014; Kattenborn
et al., 2015; Latifi et al., 2012; Rex et al., 2020). In a simi-
lar vein, we also observed a pattern related to heights in the
selected set (Li et al., 2014; García-Gutiérrez et al., 2015).
Estimating the relative importance of predictor variables for
MLMs learned is interesting as it is possible to identify co-
variables that provide minimal information to model the re-
sponse variable. These variables can be excluded from pre-
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Figure 5: Demonstration of the relative importance of predictors for machine learning models with lower rRMSE. Sigma = radial
based kernel function parameter; C = penalty parameter. SVR = Support Vector Regression.

Figure 6: Comparison of residual distribution in the test set (n = 98) for machine learning models with optimal hyperparameters
tuning using high-density UAV-Lidar GatorEye data. ANN = Artificial Neural Network; SVR = Support Vector Regression;
XGBoost = Extreme Gradient Boosting; RF = Random Forest.

dictive models, and thereby we can decrease the computa-
tional cost of the learning process.

Furthermore, we compared our results with approaches
commonly used in the literature - such as plot-based methods
and found that the accuracy of our models for forest struc-
tural attributes was relatively inferior (for example, García-
Gutiérrez et al. (2015); Lee et al. (2018)). García-Gutiérrez
et al. (2015) conducted a plot-based study to estimate forest
attributes using machine learning approaches and achieved
results superior to those of this study. Lee et al. (2018) also
achieved better results compared to us in terms of R2 value;
they obtained an R2 = 0.93 for the average height of the
plot in the best of cases. In general, forest inventory esti-
mation using LiDAR data can be performed using two types
of approaches: individual trees and plots (Hyyppä et al.,
2008). The fact that plot-based approaches present results

with fewer errors in relation to individual tree modeling may
be related to the lower use of sample units used for the mod-
eling, which ends up showing a higher value of R2. In our
study we used more than 300 sample units for robust model-
ing, this fact may have resulted in a lower R2 value (Tab. 3)
when compared to previous studies. Besides, some studies
that focused on the effects of point density upon measuring
forest structure suggested that increasing point density re-
sults in a greater precision at tree level (Disney et al., 2010;
Lovell et al., 2005) - a fact that corroborates the findings of
this study.

This study provides a fundamental reference for the se-
lection of machine learning algorithms and their respective
adjusted hyperparameters for the estimation of forest vari-
ables at the individual level based on UAV-Lidar data. Cloud
metrics have been shown to be related to the main forest
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measurements and can be derived with high reliability from
UAV-Lidar systems, generating better estimates of forest pa-
rameters. In addition, from a technical point of view, we
can highlight the possibility of creating machine learning ap-
proaches as interesting alternatives to traditional regression
methods as here the metrics are chosen are not limited and
consequently, this helps avoid loss of important information
while predicting the variable of interest, maintaining a simi-
lar level of performance (Görgens et al., 2015). Our study
demonstrated that, in iCLF system, LiDAR data and ma-
chine learning modeling could be useful and are able to assist
in obtaining variables at the individual level, although care
is needed to deal with the uncertainties inherent to model-
ing. Also, our study represents one of the first contributions
in the context of forest management in ILFP-type planted
forests in Brazil for the process of estimating structural vari-
ables of the forest using UAV-Lidar data.

5. Conclusion

Our work demonstrates that all tested machine learning
algorithms (SVR, RF, ANN, and XGBoost) are adequate
and robust to handle the high dimensionality of UAV-Lidar
data for the estimation of structural attributes of the planted
forest at an individual level, even in the presence of pre-
dictors with high collinearity. However, we consider that
the SVR models performed slightly better to predict the re-
sponse variables, even compared to the stepwise linear re-
gression method. Also, the tested models were found to vary
less among themselves for the variable height than for diam-
eter and volume.

Predictors derived from high-density UAV-Lidar data
showed high linear correlation. Unlike expected, the step-
wise linear regression method using akaike information cri-
terion (AIC) did not provide models without predictors with
high collinearity. In future research it is interesting to evalu-
ate the performance of other parametric statistical techniques
not included in this study, considered robust in the presence
of multicollinearity in the regressors.

Likewise, although the machine learning techniques
used in this study may be robust to the high collinearity be-
tween predictors, the impacts of variable selection (or elimi-
nation of highly correlated predictors) and the use of dimen-
sionality reduction techniques are interesting aspects to ad-
dress in future research.
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Figure 7: Pearson’s correlation matrix between predictor variables derived from high-density UAV-Lidar GatorEye data and
response variables. Relation with symbol = correlation coefficient is significant (� = 0.05). Relation without symbol = correlation
coefficient is regarded as insignificant.
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Table 4

Predictors selected using the stepwise linear regression method, estimated parameters and
variance inflation factor.

Parameter
Diameter Total height Volume

EP SP VIF EP SP VIF EP SP VIF

�̂0 28.286 18.941 0.529

�̂1 -9.600 zmax 322.486 5.795 zmean 715.725 0.883 zmean 930.323

�̂2 44.618 zmean 2828.947 8.806 zsd 441.900 0.800 zsd 540.831

�̂3 38.080 zsd 1064.911 -1.650 zskew 62.560 -0.148 zskew 35.237

�̂4 -7.621 zskew 63.290 -0.456 pzabovezme 9.232 -0.065 pzabovezme 7.324

�̂5 -2.210 zkurt 36.391 -0.615 pzabove2 15.015 0.019 zq20 1.412

�̂6 4.567 pzabove2 20.697 -0.514 zq5 6.229 -0.233 zq60 225.053

�̂7 0.757 zq20 2.121 0.815 zq15 8.511 -0.291 zq70 248.936

�̂8 -1.347 zq30 9.821 -5.356 zq60 490.583 -0.623 zq80 505.952

�̂9 -1.995 zq35 14.646 4.819 zq65 894.918 -0.406 zq95 366.376

�̂10 -3.726 zq40 42.556 -5.054 zq70 1155.127 0.128 zpcum6 15.299

�̂11 -11.060 zq60 329.965 6.444 zq75 1820.327 -0.085 zpcum8 7.089

�̂12 -15.611 zq70 494.137 -15.564 zq80 1958.233

�̂13 -13.912 zq80 809.936 9.834 zq85 1220.944

�̂14 -14.511 zq85 810.216 -7.490 zq90 754.999

�̂15 -10.960 zq95 555.393 -0.990 zpcum3 27.238

�̂16 3.461 zpcum5 28.124 0.947 zpcum4 18.930

�̂17 4.555 zpcum6 28.023 0.581 zpcum6 5.917

�̂18 1.756 zpcum7 23.674

�̂19 -4.636 zpcum8 25.817

�̂20 0.916 zpcum9 6.914

Where: SP = Selected predictors; EP = Estimated parameters; VIF = Variance Inflation Factor; �̂0, �̂1, �̂2,...,

�̂n = regression coefficients.
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