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 Abstract: Tropical savanna ecosystems play a major role in the seasonality of the 64 

global carbon cycle. However, their ability to store and sequester carbon is uncertain 65 

due to combined and intermingling effects of anthropogenic activities and climate 66 

change, which impact wildfire regimes and vegetation dynamics. Accurate 67 

measurements of tropical savanna vegetation aboveground biomass (AGB) over broad 68 

spatial scales are crucial to achieve effective carbon emission mitigation strategies. 69 

UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of 70 

structure and related AGB in tropical savanna ecosystems. This study aimed to assess 71 

the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and 72 

surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna 73 

(Cerrado). Five ordinary least square regression models estimating AGBt were 74 

adjusted using 50 field sample plots (30m x 30 m). The best model was selected under 75 

Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute 76 

and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar 77 

data collected over 1,854 ha spanning the three major vegetation formations (forest, 78 

savanna, and grassland) in Cerrado. The model using vegetation height and cover was 79 

the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-80 

validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our 81 

estimations were assessed for each vegetation formation separately, resulting in 82 

RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 83 

7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of 84 

the UAV-lidar technology in Cerrado but also emphasize the need for further 85 

developing the estimation of biomass in grasslands, of high importance in the 86 

characterization of the global carbon balance and for supporting integrated fire 87 

management activities in tropical savanna ecosystems. Our results serve as a 88 

benchmark for future studies aiming to generate accurate biomass maps and provide 89 

baseline data for efficient management of fire and predicted climate change impacts 90 

on tropical savanna ecosystems. 91 

 92 
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1.  Introduction 95 

Tropical savanna ecosystems occupy approximately 20% of the Earth’s 96 

terrestrial surface and are recognized globally for their species richness and 97 

endemic biodiversity (Simon et al., 2009). These ecosystems are characterized by a 98 

gradient of vegetation formations ranging from grasslands to savannas to forests. 99 

Wildfires are an important element of the tropical savanna, but natural fire 100 

regimes have been altered by anthropogenic activities and climate change (Pivello, 101 

2011; Reichstein et al., 2013). Tropical savannas play a major role in the global 102 

carbon budget (Poulter et al., 2014), but their ability to store and sequester carbon, 103 

and the combined impacts of their fire regimes and vegetation dynamics on the 104 

global carbon balance, are still largely unknown (van der Werf et al., 2010; Pugh et 105 

al. 2019; Duvert et al., 2020; Lasslop et al., 2020).  106 

The Brazilian Savanna, known as Cerrado,  is the second-largest habitat 107 

type in South America, after the Amazon biome, spanning two million km2 (23.3% 108 

of the Brazilian territory) (Silva and Bates, 2002; Bonanomi et al., 2019). Cerrado is 109 

considered a hotspot for biodiversity and plays an important role in mitigating 110 

climate change and global warming by storing carbon in biomass (Ribeiro et al., 111 

2011). However, Cerrado is severely threatened by increased anthropogenic 112 

activities and human-driven changes in fire regime (Durigan and Ratter, 2016). 113 

Between 2002 and 2010, the 545,000 km2 area burned in the Cerrado biome 114 

represented approximately 73% of the total burned area in Brazil (Araújo et al., 115 

2012), while constituting only 6.4% of the land area. Hence, fire strongly shapes the 116 

vegetation and ecotones in savannas (Hirota et al. 2011; Staver et al. 2011). By 117 

changing vegetation structure, fires also can induce cascading effects that alter 118 

habitat quality for fauna (Lindenmayer et al., 2008). 119 

Almost half of the Cerrado’s original vegetation has been lost in the last few 120 

decades (Souza et al., 2020), and the remaining areas face continuous 121 
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environmental threats as a result of the expansion of agricultural production to 122 

supply the increasing global food demand. Innovative monitoring strategies for 123 

understanding the landscape configuration of biomass stocks and their changes 124 

are needed in the Cerrado to develop accurate predictive vegetation dynamics and 125 

climate models that could support decisions and inform policymakers to define 126 

strategies of carbon markets and REDD+ initiatives globally. Moreover, these 127 

strategies are crucial to improve forest fire management techniques that could 128 

contribute to maintaining ecological values in tropical savannas (Ribeiro et al., 129 

2011; Franke et al., 2018; Levick et al., 2018;  Durigan et al., 2020). Given the large 130 

latitudinal gradient and the high environmental, structural, and inter and 131 

intraspecies variability within the Cerrado biome, data collection requires time and 132 

labor-intensive fieldworks (Ottmar et al., 2001; Gwenzi and Lefsky, 2016; Roitman 133 

et al., 2018). Although field data provide the most accurate and straightforward 134 

estimates, field data collections are constrained by time, financial cost, and labor, 135 

making them impractical and expensive to apply for large-scale and/or recurrent 136 

studies (Mohan et al., 2017; Goldbergs et al., 2018; Silva et al., 2020). Additionally, 137 

direct biomass estimation requires destructive sampling that causes some impacts 138 

on local habitat and the ecosystem. Integration of mathematical models and 139 

indirect measurements using remotely sensed data provide complementary or 140 

alternative approaches to estimate biomass and other physical variables (Qureshi 141 

et al., 2012; Ribeiro et al., 2017).  142 

Among the remote sensing technologies available, light detection and 143 

ranging (lidar) has gained prominence in recent decades due to its ability to 144 

provide detailed and accurate characterizations of vertical vegetation structure in 145 

tropical savanna ecosystems (Gwenzi and Lefsky, 2016; Levick et al., 2018; 146 

Goldbergs et al., 2018; Zimbres et al., 2020). These three-dimensional structural 147 

assessments can be undertaken by spaceborne (SLS), airborne (ALS), or terrestrial 148 

laser scanning (TLS) platforms, although the latter is constrained by limited spatial 149 
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footprints and thus is not directly applicable for broad-scale studies (Ferreira et al., 150 

2012; Ribeiro et al., 2017; Silva et al., 2018; Luck et al., 2020; Valbuena et al., 2020; 151 

Zimbres et al., 2020; Singh et al., 2021). The advent of unmanned aerial vehicles 152 

(UAVs) has further expanded the capabilities of airborne lidar, as UAV-lidar is an 153 

easily implementable and cost-effective solution that bridges the scale gap between 154 

ALS and TLS collections and improves the accuracy of outputs such as tree height, 155 

leaf area density, and biomass (Wang et al., 2019; Almeida et al., 2020; Dalla Corte 156 

et al., 2020; Harkel et al., 2020; Shendryk et al., 2020).  157 

Notwithstanding the demonstrated potential of lidar in estimating biomass 158 

at both landscape and regional scales by previous studies (Drake et al., 2002; 159 

Naesset and Gobakken, 2008; Hudak et al., 2020), they are still rarely implemented 160 

in tropical savanna. Additionally, the majority of the undertaken studies have 161 

placed their primary focus solely on the estimation of biomass from trees, using 162 

ALS and TLS (e.g., Bispo et al. 2020; Zimbres et al., 2020), or the recent SLS 163 

missions, such as NASA Global Ecosystem Dynamics Investigation (GEDI) 164 

(Dubayah et al. 2020; Marselis et al. 2019; Marselis et al. 2020). The very few studies 165 

that have ventured into estimating individual biomass components have limited 166 

their purview with the assessment of biomass contributions from tree strata, such 167 

as leaves, branches, and stems (García et al. 2010; Silva et al. 2014; Hernando et al. 168 

2017; Scaranello et al. 2019). However, a significant portion of the total 169 

aboveground biomass in tropical savanna is composed of surface biomass (duff, 170 

litter, downed woody debris, shrub, and herbaceous), which are not taken into 171 

account by the foregoing studies. These, however, have great influence on fire 172 

regimes and associated carbon cycles (Pivello, 2011). Therefore, it is crucial to fill in 173 

the gap between global carbon fluxes and current remote sensing estimations of 174 

biomass in terrestrial ecosystems, with the development of models that account for 175 

large components of ecosystem biomass that remain unaccounted for when only 176 

woody tree biomass is considered (Dass et al., 2018).  177 
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Even though lidar has been shown to be beneficial for capturing the 3-D 178 

structures of the vegetation in savanna ecosystems (Anderson et al., 2018; Bispo et 179 

al. 2020; Zimbres et al., 2020), there is a need to develop a framework for mapping 180 

total (woody, shrubs and surface vegetation) total aboveground biomass density 181 

(AGBt) and evaluate the applicability of UAV-lidar for AGBt in tropical savanna 182 

ecosystems. This study aimed to assess the capability of high-density UAV-lidar to 183 

estimate and map AGBt across the structurally complex vegetation formations of 184 

the Cerrado in Brazil. Herein, we developed a framework for: (i) selecting the best 185 

UAV-lidar metrics to build AGBt models; (ii) shortlisting the best models to 186 

predict AGBt; (iii) estimating AGBt at plot level; and (iv) mapping AGBt at the 187 

landscape level, assessing its spatial distribution and uncertainty across the main 188 

Cerrado vegetation formations: grassland, savanna, and forest. Given the resource-189 

grade accuracy available through high-density UAV-lidar (Wilkinson et al., 2019), 190 

we hypothesize that it would be possible to map AGBt in Cerrado at a satisfactory 191 

precision, and we expect to identify biome-specific technological challenges that 192 

need to be addressed for furthering our understanding of the existing ecosystem 193 

intricacies and advancement of carbon management paradigms. Since there exist 194 

no other UAV lidar-based studies on total AGB density estimates for the Cerrado 195 

biome, this work is intended to serve as a benchmark for future studies and should 196 

help generate consistent AGBt maps even as the climate and environment are 197 

changing. 198 

 199 

 2.  Material and Methods 200 

2.1.   Study area  201 

Our study sites are located at the Serra do Cipó National Park (SCNPK), 202 

Chapada dos Veadeiros National Park (CVNPK), Paraopeba National Forest 203 

(PNF), and University of São João Del-Rei’s Forest (UFSJ) (Fig. 1).  204 



 

 

7 

 

SCNPK (19°12'-34'S, 43°27'-38'W) is located in the southeast portion of the 205 

Cerrado biome, state of Minas Gerais. The region's climate is mesothermal, Cwb 206 

(subtropical of altitude) according to Koppen's classification (Alvares et al., 2013), 207 

with dry winters and rainy summers, and annual  rainfall averages ca. 1,400 mm, 208 

with a rainy season occurring between October and March, and monthly rainfall 209 

ranging from 75 to 340 mm (Alvarado et al., 2017). The average annual 210 

temperature ranges from 17.0° to 18.5°C. The study site’s topography is rugged 211 

and predominantly mountainous, with elevations ranging from 750 to 1,670 m 212 

above sea level (a.s.l.) (Ribeiro and Figueira, 2017). The vegetation in SCNPK 213 

varies and comprises different physiognomies, from open grasslands (“Campo 214 

Limpo”) at altitudes below 1,000 m to savanna formations with different 215 

proportions of woody cover (“Campo Sujo”, “Campo Cerrado” and “Cerrado 216 

sensu stricto”) and forest formations (“Cerradão”), all classified as part of the 217 

Cerrado sensu lato (Oliveira-Filho and Ratter, 2002); above 1,000 m are found the 218 

rupestrian grasslands (Benites et al., 2003). The soils are diverse and vary 219 

according to the vegetation formations, being greatly determined by microclimatic 220 

gradients associated with local topography. In savanna and forest formations, 221 

there are latosols and cambisols, while in the rupestrian grasslands there are 222 

litholic neosols and spodosols (Schaefer et al., 2016). 223 

The CVNPK (13°51'-14°10'S, 47°25'-42'W) encompasses five municipalities 224 

in the state of Goiás, Brazil. Within a mountainous region, the altitude in CVNPK 225 

ranges from 620 to 1,700 m a.s.l., and the climate is characterized as tropical and 226 

sub-humid (AW) (Alvares et al., 2013). The average temperatures range from 20° to  227 

26°C (Silva et al., 2001). The landscape is formed by mosaics of different vegetation 228 

types (Ribeiro and Walter, 2008) characterized by a predominance of savannas at 229 

high elevations and forest formation at low elevations (Felfili et al. 2007). Dry and 230 

wet grasslands and savannas cover most of the landscape and occur in between 231 

streams. Dry deciduous forests are found at the northwest edge of the park, 232 
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whereas riparian evergreen forests are most common at the southwest edge of the 233 

park (Flores et al., 2020). In total, the CVNPK comprises 77% of savanna formation, 234 

and about 10% corresponds to the forest fragments (Porto et al., 2011). Cambisols 235 

and litholic neosols occupy the largest area of the park (IBAMA, 1998). 236 

The PNF (19° 20'S and 44° 20'W) is located in the municipality of Paraopeba, 237 

state of Minas Gerais, Brazil. It is comprised of 150 ha remnants of Cerrado 238 

vegetation, including both savanna (e.g., Cerrado sensu stricto) and forest 239 

formations (e.g.Cerradão) (Neri et al., 2013). The altitude in PNF ranges from 734 240 

to 750 m a.s.l., and the climate is characterized by the humid subtropical type (Cfa) 241 

(Alvares et al. 2013), with a rainy summer from January to March and a dry season 242 

that occurs from April to September, with a mean annual precipitation of 1,236 243 

mm (Balduino et al. 2005). The soils range from Latosols (red, red-yellow, and 244 

yellow) to cambisols and fluvic neosols (Neri et al., 2013). 245 

The UFSJ forest (19°28’S, 44°11’W) is located in the Sete Lagoas 246 

municipality, state of Minas Gerais, Brazil, at an altitude that ranges from 742 to 247 

815 m.  The local climate is considered tropical altitude (Cwa) (Alvares et al., 2013), 248 

with a well-defined dry winter and rainy summer. The average annual 249 

temperature is 21.73°C, and the mean annual precipitation is 1,330 mm (Guimarães 250 

and Rios, 2010). The predominant vegetation type is Cerrado sensu stricto 251 

characterized by the dominance of trees with scattered shrubs and grass 252 

understorey. The climate is of the humid subtropical type, with a dry winter and 253 

moderately hot summer (Alvares et al., 2013). The soils are predominantly Oxisols 254 

(red latosol and red-yellow latosols). 255 

Altogether, our four study sites represent various Cerrado vegetation 256 

physiognomies spanning a wide range in vertical and horizontal vegetation 257 

structures, and also in species diversity and provenances. Herein, we classified the 258 

vegetation of our study sites into three major formations according to Ribeiro and 259 

Walter (2008) and defined as: (i) grasslands, mostly represented by a shrub-260 
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herbaceous layer with absence or randomly sparse taller shrub individuals; (ii) 261 

savannas, which feature a continuous shrub-herbaceous layer and a discontinuous 262 

tree layer that ranges in density and never closes completely; and (iii) forests, 263 

mostly represented by a continuous tree layer but also very structurally diverse as 264 

a result of the species communities partitioning under different environmental 265 

conditions.  (Fig. 2).  266 

    267 

 268 

Figure 1. Map of the UAV-lidar-derived vegetation height within the study area in 269 

the Brazilian Cerrado. Serra do Cipó National Park (SCNPK), Chapada dos 270 

Veadeiros National Park (CVNPK), Paraopeba National Forest (PNF), and 271 

University of São João Del-Rei’s Forest (UFSJ).  272 

 273 

2.2.   Field measurements  274 
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Field plots of 30 m × 30 m (900 m²) covering all the Cerrado formations (Fig. 275 

2) were established between June and July of 2019 for measuring the vegetation 276 

total aboveground biomass density (AGBt). Plot corners were registered using a 277 

Differential Global Navigation Satellite System (DGNSS). The aboveground 278 

biomass density of trees  (AGBTrees, in Mg/ha) was determined from measurements 279 

of all individual trees within the plot with a diameter at breast height (dbh, in cm) 280 

≥ 10 cm. Every tree was taxonomically identified, and their heights (ht, in m) and 281 

dbh were measured using a clinometer and diameter tape, respectively. Within 282 

each plot, two 2 m × 5 m sub-plots were established to determine the aboveground 283 

biomass density of shrubs and small trees (dbh < 10 cm) (AGBST, in Mg/ha). For 284 

each plot, four 1 m × 1 m sub-plots were established for determining the 285 

aboveground biomass density of surface vegetation (AGBSB, in Mg/ha). The AGBt 286 

was calculated as the sum of the biomass density (in Mg/ha) components 287 

measured within each plot and sub-plots, each component having been  288 

transformed into biomass density (in Mg/ha) using their corresponding hectare 289 

expansion factors (HEF). 290 

Individual tree dry biomass was estimated in the field using a published 291 

allometry equation calibrated (Eq. 1) based on dbh, ht and wood density (ρ) 292 

information (Chave et al 2014). Total dry tree biomass density (AGBST, in Mg/ha) 293 

was computed by summing up individual tree biomass to the plot level (Eq. 2): 294 

 295 

�������_� = 0.0673 ∗ (� � ��ℎ� ∗  ℎ��)�.��� (Eq.1) 

 

�������� =  � ��� ���!  ∗  "#$�����
%

�&'
 

(Eq. 2) 

 

  

where: dbh is in cm, ht is in m, and � is in g.cm-3. AGBTrees represents the total dry 296 

tree biomass density at the plot level, AGBTree_i represents dry biomass (in kg) per 297 
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tree i, and n represents the number of trees for each plot i, and HEFTrees = 11.11. 298 

Wood density values � were derived from Zanne et al. (2009). 299 

For measuring the AGB stock in the 2 m × 5 m shrub sub-plots, we 300 

harvested all the shrubs and small trees and weighed them using a 10 g precision 301 

scale. Three ~500 g samples per sub-plot containing both the shrub and tree 302 

components (stems, branches, and leaves) were sent to the laboratory to measure 303 

the weights of wet biomass (WB, in g) and dry biomass (DB, in g) biomass. 304 

Average WB and DB values were used to calculate moisture content (MCi, in %) 305 

for each sub-plot, according to Eq. 3. Total dry shrub and small tree biomass 306 

density (AGBST, in Mg/ha) was then calculated as: 307 

()� =  *�� +  ,��*��  (Eq. 3) 

  

���-� =  ∑ ���-�! ∗  "#$-�  ∗  (1 + ()�%�&' ) (Eq. 4) 

  

where AGBST is the dry shrub and small tree biomass density at the plot level, 308 

AGBSTi is the wet shrub and small tree biomass for sub-plot i (in kg), MCi is the 309 

moisture content calculated for each sub-plot, and HEFST = 500.    310 

For computing the surface vegetation biomass at the plot level, in the field, 311 

we collected and weighed the biomass of duff, litter, downed woody material, and 312 

herbaceous material found within the 1 m × 1 m sub-plots. Again, three ~500 g 313 

samples per sub-plot were also collected and sent to the laboratory for computing 314 

the MCi for the surface biomass (Eq. 3). The total dry surface biomass density 315 

(AGBSB, in Mg/ha) was then calculated as: 316 

 317 

���-0 =  � ���-0! ∗%
�&'

"#$-0  ∗  (1 + ()�) (Eq. 5) 
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where AGBSB is the dry surface biomass density at the plot level, and AGBSBi is the 318 

wet surface biomass for sub-plot i (in kg), MCi is the moisture content calculated 319 

for each sub-plot, and HEFSB = 2,500.  320 

 321 

Finally, the total dry aboveground biomass density (AGBt, in Mg/ha) at the 322 

plot level was then computed by summing the AGBtree, AGBST, and AGBSB 323 

measurements (Eq. 6). 324 

 325 

��� =  �������� +  ���-� +  ���-0 (Eq. 6) 

  

The summary of AGBt within all the field plots and stratified by Cerrado 326 

formations is presented in Table 1. 327 

 328 

Table 1. Summary of the total aboveground biomass density (AGBt) within our 329 

field plots and stratified by Cerrado formations. 330 

Formation Number 

of plots 

AGBt (Mg/ha) 

min max mean sd 

Grassland 5 11.65 25.86 17.19 7.30 

Savanna 30 13.32 100.22 40.39 23.55 

Forest 15 43.68 187.94 104.21 42.39 
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 331 

Figure 2. Illustration of field data collection. a) Cerrado formation, b) design of field plots and subplots for measuring the total 332 

aboveground biomass (AGBt), and c) Tree dbh and height measurements, d) surface biomass measurement.  333 
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2.3.   UAV-lidar  334 

Our study sites were scanned using the GatorEye UAV-lidar system (Fig. 3) 335 

(Almeida et al., 2020; Prata et al., 2020; Dalla Corte et al., 2020) during two weeks 336 

in July 2019, which was nearly simultaneous with the field data collection. The 337 

GatorEye uses a DJI M600 Pro planform mounted with a Phoenix Scout Ultra core 338 

to integrate lidar with an inertial motion unit (Novatel STIM 300), and cm accuracy 339 

differential GNSS system, which have a combined weight of approximately 4.5 kg. 340 

The lidar sensor, which was uniquely used in this study, was a Velodyne VLP-32c 341 

dual-return laser scanner which has a total of 32 separate lasers each having a 360° 342 

vertical field of view (FOV) and which are distributed to permit an instantaneous 343 

40° along-track FOV. The laser suite emits 600,000 pulses per second and a 344 

theoretical return number of 1,200,000 per second, which during flight with an 345 

across-track FOV of 120° creates a realized approximate 350,000 returns per 346 

second, with the remaining going out of range. A ground base station X900S-OPUS 347 

GNSS receiver collected static GNSS data, which were used to calculate a PPK 348 

(post-processed kinematic) flight trajectory using Novatel Inertial Explorer 349 

software. Absolute point accuracy was tested using ground-surveyed DGNSS 350 

checkpoints, and it was accepted when showing a root mean square error (RMSE; 351 

eq. 10) below 5 cm (Wilkinson et al., 2019). Detailed information and data 352 

downloads can be found at the GatorEye website (www.gatoreye.org) (Broadbent 353 

et al., 2020) and in d’Oliveira et al. (2020). The autonomous flight was programmed 354 

to survey at a mean speed of 14 m/s at around 100 m above ground level (a.g.l.), 355 

with flightlines spaced 100 m apart. In total, across the four study sites, we flew 356 

approximately 600 km of flight lines covering 1,854 hectares, which to our 357 

knowledge is the largest area of UAV-lidar used in a publication (as of 12/16/20). 358 

The final merged point clouds were about 100 GB in total size and had a very high-359 

density of approximately 450 points/m2 across all study sites. 360 
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361 
Figure 3. GatorEye UAV-lidar system. a) GatorEye UFL (Gen 1) system, with 362 

Phoenix Scout Ultra, hyperspectral, and visual sensors on a DJI M600 Pro airframe; 363 

b) GNSS antennas for navigation (three) and sensor trajectory (middle); and c) 364 

Velodyne Ultra Puck (lidar system). 365 

 366 

The UAV-lidar 3-D point cloud data was processed using the GatorEye 367 

Multi-scalar Post-Processing Workflow, followed by further flight line alignment 368 

using Bayes StripAlign software, as it is described in detail in Broadbent et al. 369 

(2020). The final elliptical merged point clouds were further processed using 370 

Lastools (Isenburg, 2020). First, the las files were divided into tiles of 200 m for 371 

ground return classification via lasground (spike: 1 m, bulge: 0.5 m, step: 10 m, 372 

offset: 0.05 m). Digital terrain models (DTM) were created with a spatial resolution 373 

of 1 m via the blast2dem and used for normalizing the 3-D point cloud to height 374 

a.g.l. via lasheight. The Lasclip tool was used for clipping the point cloud within the 375 

field plots, and the lascanopy tool was applied for computing a suite of lidar canopy 376 

height and cover metrics per plot and for the entire lidar coverage as grid layers 377 

with a spatial resolution of 30 m (see Table 2). 378 

 379 

 380 
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Table 2. UAV-lidar derived metrics. 381 

Class Metrics Description 

Height 

HMEAN Height mean 

HMAX Height maximum 

HSD Height standard deviation 

HKUR Height kurtosis 

HSKE Height skewness 

HOME Height of Median Energy 

H25TH Height 25th percentile 

H50TH Height 50th percentile 

H70TH Height 70th percentile 

H75TH Height 75th percentile 

H80TH Height 80th percentile 

H85TH Height 85th percentile 

H90TH Height 90th percentile 

H95TH Height 95th percentile 

H98TH Height 98th percentile 

H99TH Height 99th percentile 

Cover COV Cover (percentage of first return above 1.30 

m) 

 382 

2.4.  Modeling development and assessment  383 

Our modeling framework was based on linear regression models (Eq. 7) 384 

fitted using the ordinary least squares (OLS) estimator (Eq. 8). Herein, a family of 385 

five models was developed in two steps by first removing high correlated metrics, 386 

and second selecting the best models using the best subsets of predictors (Hudak 387 

et al., 2006; Silva et al., 2014). First, Pearson’s correlation (r) was used to identify 388 

and exclude highly correlated variables using a ±0.9 threshold. Subsequently, we 389 

applied an exhaustive variable selection algorithm to find the best linear models 390 

with up to six predictors using the regsubsets function of the R package leaps 391 

(Hudak et al., 2006; Lumley, 2020). The linear models were fitted using the natural 392 

logarithm transformation of the AGBt as a response and the non-correlated lidar-393 

derived metrics as predictor variables. The heteroscedasticity and normality of the 394 
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model residuals were tested with the Breusch-Pagan (Breusch and Pagan, 1979) 395 

and Shapiro-Wilk (Shapiro and Wilk, 1965) tests at the significance level of 0.05. 396 

2- =  3-4 +  5- (Eq. 7) 

where: 2- is the n-length column vector of the response variable AGBt in sample S; 397 

3- is an n x (p + 1) matrix of the lidar metrics used as predictors and a unit vector 398 

as the first column; 4 is a column vector of model parameters of length (p + 1); and 399 

5- is the n-length column vector of random errors with E(5-) = 0 and 5�~N(0,67�). 400 

Using the sample S of n = 50 plots, the vector of model parameters was estimated 401 

for each model as: 402 

48- = (3-�3-)9'3-�2-  (Eq. 8) 

where: 48- is a column vector of estimated model intercept and parameters with 403 

length (p + 1), and p is the number of predictors. 404 

We calculated the adjusted coefficient of determination (adjR2) and the 405 

absolute and relative root mean square error (RMSE and %RMSE, respectively), 406 

and absolute and relative mean differences (%MD), between the estimated and 407 

observed AGBt values (Eqs. 9-13) to assess the models’ performance. The models 408 

were ranked using the corrected Akaike information criterion (AICc, Eq. 14) 409 

(Sugiura, 1978; Hudak et al., 2006). The AICc can be applied when the number of 410 

observations is relatively small (n/p < 40) and computes an additional penalization 411 

for the number of parameters to the AIC (Akaike 1979).  412 

:�;<� =  1 +  (1 +  <�) (= + 1)= +  > +  1  (Eq. 9) 

<(?# = @∑ (2AB +  2�)�%�&' =  (Eq. 10) 

%<(?# =  <(?#2D  ∗  100 (Eq. 11) 

(, =  ∑ (2E� +  2�)%�&' =  (Eq. 12) 
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%(, = (,2D  ∗ 100 (Eq. 13) 

�F)G = �F) + 2> (IJ')(%9I9') , (Eq. 14) 

where: 2AB  is the estimated AGBt; 2� is the observed AGBt; 2D is the sample mean 413 

observed AGBt; n is the number of observations, and p is the number of predictors. 414 

All performance assessments were carried out using the AGBt on its original scale. 415 

The back-transformation was conducted by applying the inverse natural logarithm 416 

to the AGBt values. The estimated values were further multiplied by a correction 417 

factor (Eq. 15) to reduce MD related to the log-transformation (Smith 1993, Hudak 418 

et al. 2006).  419 

GK =  L(�.M N O-P) (Eq. 15) 

where: MSE is the mean squared error.  420 

The model performances were also estimated for the different Cerrado 421 

formations (grassland, savanna, and forest). The best-ranked model was further 422 

assessed with a leave-one-out cross-validation (LOOCV) and R2, absolute and 423 

relative RMSE and MD were also calculated based on the observed and estimated 424 

AGBt values derived from the LOOCV procedure within each vegetation 425 

formation. The Wilcoxon–Mann–Whitney rank-sum (W) test (Wilcoxon, 1945) was 426 

applied to assess if the estimated and observed AGBt differ at the significance level 427 

of 0.05.  428 

  429 

2.5.  Aboveground biomass mapping  430 

The best linear model was implemented across the entire landscape, to map 431 

the AGBt in the study site. In this step, the lidar-derived metrics used as predictors 432 

were calculated for a spatially-continuous grid of 30 m × 30 m cells, and the model 433 

was applied to every grid cell across all the study sites. The Cerrado formations 434 

were delineated based on visual interpretation of high spatial resolution GatorEye 435 
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UAV RGB and Planet’s imagery (Planet Team, 2017), conducted by an experienced 436 

local photo-interpreter. 437 

Accounting for the uncertainty of the estimates is important when 438 

combining inventory and remote sensing data to map forest attributes (Persson 439 

and Stahl, 2020). We accounted for the uncertainty for each Cerrado formation by 440 

calculating the variance of the estimator (Q[#(S)T �]) estimated using standard 441 

model-based inference (Saarela et al. 2016, Stahl et al. 2016, Puliti et al. 2018). In 442 

this approach, the sample S used to develop the models in section 2.4 was 443 

considered a draw from a larger population U. The Ui represents the finite 444 

population of the i-th Cerrado formation with Ni grid-cells. Considering the OLS-445 

estimated parameters 48- (Eq. 8), the expected mean value (#(S)T �) and Q[#(S)T �] for 446 

the i-th Cerrado formation can be estimated with Eq. 16 and Eq. 17.  447 

#(S)T � = VW�� 3W�48- (Eq. 16) 

where: VW� is the Ni-length column vector with values 1/Ni for the Ni grid cells of 448 

population Ui of the i-th vegetation type; 3W� is a Ni x (p + 1) matrix of the lidar 449 

metrics used as predictors and a unit vector as the first column. 450 

Q[#(S)T �] = VW�� 3W�)XY(48-) 3-�VW� (Eq. 17) 

where: )XY(48-) is the covariance matrix of the model parameters 48-. Assuming 451 

that the estimated errors are homoscedastic the )XY(48-) as calculated by Eq. 18. 452 

)XY(48-)  =  5-̂�5-̂= + > + 1 (3-�3-)9' (Eq. 18) 

where: 5-̂ is the vector of the estimated residuals for the model developed using 453 

the sample S (Eq. 16). The standard error ?#[� is subsequently then estimated as the 454 

\Q[#(S)T �] and the %?#[� as a percentage of the mean estimated AGBt. 455 

 456 
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 457 
Figure 4. Workflow for the UAV-lidar data processing (left), AGBt modeling (middle), and mapping (right) in Cerrado. 458 
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3.  Results  459 

 460 

3.1.   UAV-lidar metrics 461 

Fig. 5 shows the Pearson’s correlation test (r) among the 17 UAV lidar-462 

derived metrics (Table 2). In general, 12 metrics were highly correlated (|r| > 0.9) 463 

with each other  and were therefore excluded from further analysis under the 464 

adopted threshold criteria (Fig. 5). We kept one of the highly correlated metrics 465 

(H98TH), and along with the four remaining metrics (i.e., COV, H50TH, HKUR, 466 

and HSKE), we built the prospective models to estimate AGBt. Three variables 467 

were positively correlated, such as H98TH, COV, and H50TH, while two others 468 

were negatively correlated, such as HKUR, and HSKE (Fig. 4). Although the 469 

number of metrics was reduced to five, the above mentioned lidar-derived metrics 470 

still represented important attributes of the vegetation, such as the dominant 471 

height (e.g., H98TH), the canopy coverage (e.g., COV), and the vegetation's height 472 

asymmetry (e.g., HSKE). 473 
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 474 

Figure 5. Pearson’s correlation (r) diagram among the 17 candidate UAV-lidar 475 

metrics using a |r| > 0.9 threshold. The values are ranked using a color gradient 476 

from -1 to 1, where 0 means no correlation and 1 a strong correlation. The negative 477 

and positive signs indicate inverse and direct relationships between two variables, 478 

respectively. 479 

 480 

In grasslands, the lidar returns were more concentrated near the ground 481 

(Fig. 6.a1-a3) because of the lower vegetation structure and variability found in 482 

this formation. This is clearly illustrated by inspecting the 3-D view perspective of 483 

the lidar point cloud for the formation types in Cerrado (Fig. 6.a1-a3). The 484 
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grasslands observed in the four selected study areas were usually found and 485 

arranged in small patches among both forests and savannas. Grasslands showed a 486 

predominantly regular height distribution over the landscape and showed a very 487 

high density of herbaceous plants per unit area, which makes lidar returns' 488 

penetration difficult. In savanna formations, UAV-lidar vegetation height 489 

exceeded 10 m and showed higher structural variability than grasslands (Fig. 6.b1- 490 

6.c1). The lidar height returns were sparsely and randomly distributed within 491 

shrubs and isolated trees (Fig. 6.b3). In forests, the lidar height returns were more 492 

distributed between the lowest and topmost height strata showing two to three 493 

well-defined canopy strata (Fig. 6.c3).  494 

 495 

Figure 6. Ground pictures were taken during the field measurements (a-c1). 3-D 496 

point cloud perspectives for selected sample plots surveyed by UAV-lidar and 497 

where different biophysical properties were measured (a-c2). Density plots of lidar 498 
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height returns for the three major formations (a-c3). The letter indicates the 499 

vegetation formation and is identified as grassland (letters starting with a), 500 

savanna (letters starting with b), and forest (letter s starting with c). 501 

3.2.   Model performance assessment 502 

Table 3 shows five models tested in this study based on the five selected 503 

lidar metrics (H98TH, COV, H50TH, HKUR, and HSKE). The first model contains 504 

only the metric H98TH, while for the other models we increased the number of 505 

variables by adding the remaining lidar metrics, only one per model, based on the 506 

exhaustive variable selection approach.  507 

The best model for estimating AGBt used H98TH and COV only, as they 508 

were the best predictors among the suite of lidar metrics (Table 3). This model 509 

produced the lowest AICc and satisfied residual normality and homoscedasticity 510 

assumptions based on the Shapiro–Wilk (W = 0.95 and p-value = 0.07) and 511 

Breusch–Pagan (BP > 1.47 and p-value > 0.48) tests. 512 

 513 

Table 3. Comparison of calibrated models using UAV-lidar derived metrics for 514 

estimating total aboveground biomass (AGBt) in Cerrado. The description of the 515 

UAV-lidar-derived metrics is shown in Table 2.  516 

Predictors Adj.R2 RMSE 

(Mg/ha) 

RMSE 

(%) 

MD 

(Mg/ha) 

MD 

(%) 

AICc 

H98TH 0.74 24.30 42.46 -1.79 -3.12 44.11 

H98TH, COV 0.79 19.11 33.40 -0.26 -0.46 36.49 

H98TH, COV, H50TH  0.77 20.25 35.40 -0.70 -1.23 42.59 

H98TH, COV, H50TH, 

HKUR 

0.77 19.88 34.75 -0.59 -1.02 51.71 

H98TH, COV, H50TH, 

HKUR, HSKE 

0.76 20.14 35.21 -0.60 -1.05 63.13 
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Note: Adjusted coefficient of determination (Adj.R2), absolute (Mg/ha) and relative 517 

(%) root mean square error (RMSE) and mean differences (MD); Akaike’s 518 

information criterion corrected for a small sample size (AICc). 519 

Fig. 7a shows the performance of the best model using the H98TH and COV 520 

predictors with the LOOCV procedure. Fig. 7b shows the distribution of the 521 

estimated vs. observed AGBt derived from the LOOCV. Based on the LOOCV 522 

results for the best model (Fig. 7a-b), the model slightly underestimated AGBt over 523 

lower intervals, and slightly overestimated AGBt in higher intervals. Nevertheless, 524 

despite the small differences, the model accuracy as assessed by the LOOCV 525 

procedure showed estimates with a MD less than 1 Mg/ha (< 1%), which reveals 526 

the robustness of the selected model. According to the Wilcoxon rank sum test, the 527 

AGBt estimates derived from LOOCV did not significantly differ from the 528 

observed values (p-value = 0.6918).  529 

 530 

 531 

Figure. 7. (a) Scatterplot of cross-validation predictions versus observations (N=50) 532 

for the natural-logarithm-transformed total aboveground biomass (AGBt) using 533 

the leave-one-out cross-validation (LOOCV). The dashed red line indicates the 1:1 534 

relationship, whereas the black line indicates the best fit. Numbers in parentheses 535 

are the standard errors for each coefficient. (b) Frequency distribution of both the 536 
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estimated and the observed distribution of the AGBt. The dashed line indicates the 537 

mean AGBt for both datasets. 538 

 539 

Table 4 shows AGBt estimation accuracies from both the calibration and 540 

LOOCV procedures by applying the best model summarized by the Cerrado 541 

formations. In general, the estimated accuracy of the calibrated model and LOOCV 542 

showed similar trends, although as expected cross-validation performed slightly 543 

worse based on relative RMSE and MD. Perhaps due to the sample size (n), the 544 

grassland model showed the lowest precision (%RMSE) and accuracy (%MD) 545 

compared to the savanna and forest models. The forest model was most precise 546 

(lowest %RMSE) while the savanna model was most accurate (lowest %MD). 547 

 548 

Table 4. Summary of absolute and relative RMSE for the calibrated model and 549 

LOOCV AGBt predictions stratified by vegetation formations in Cerrado. n= 550 

number of observations (field plots) per formation. 551 

Model Formation RMSE MD n 

Mg/ha % Mg/ha % 

Calibration 

model 

Grassland 7.16 41.63 2.52  14.65 5 

Savanna 17.24 42.69 -0.17 -0.43 30 

Forest 24.61 23.62 -1.37 -1.32 15 

LOOCV Grassland 7.72 44.92 2.71 15.74 5 

Savanna 17.76 43.96 -0.28 -0.68 30 

Forest 27.08 25.99 -1.34 -1.29 15 

 552 

 553 
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 554 

 555 

 556 

3.3.   Aboveground biomass mapping  557 

The best model was applied across the landscape for mapping AGBt for the 558 

four selected study areas (Fig 8 a1-d1). At the landscape level and according to the 559 

given vegetation formation, the estimated mean and standard error of the AGBt 560 

estimates ranged from 21.28 to 99.35 Mg/ha and 9.03 to 25.39 Mg/ha, respectively 561 

(Table 5). Savanna and forest formations stored 48.09% (19.72 Mg/ha) and 78.58% 562 

(78.07 Mg/ha) more AGBt than grassland within our study sites. The uncertainty 563 

associated with the AGBt estimated mean was higher in the grassland than in 564 

savanna or forest formations (Table 5). In terms of spatial coverage, savanna was 565 

the most predominant contributing vegetation formation in the four study sites, 566 

which encompassed 59.8% of the total area, followed by forests (30.7%) and 567 

grassland (9.5%).  568 

The use of high spatial resolution data from both GatorEye UAV-RGB and 569 

PlanetScope imagery allows for the delineation of the spatial distribution of each 570 

Cerrado formation for the four selected study areas (Fig. 8). Two sites showed all 571 

three vegetation formations (Fig 8a2, and c2), whereas one site showed both 572 

savanna and forest formations (Fig. 8d2), and one site only savanna (Fig 8c2). The 573 

resulting histograms show the proportions of AGBt for each study site and 574 

Cerrado formation (Fig 8 a3-d3). 575 

 576 
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 577 

Figure 8.  UAV-lidar derived maps of total aboveground biomass (AGBt) for the 578 

study sites a1-d1) with 30 m spatial resolution; Cerrado formation layers a2-d2) 579 

and distribution of the AGBt per vegetation formation in Cerrado.    580 

 581 
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Table 5. Summary of the total aboveground biomass (AGBt) and variance 582 

estimators at the landscape scale within the Cerrado formations. n = number of 583 

observations (mapped grid cells). 584 

Formation ](^)T  _[](^)T ] `][  %`][  n 

Grassland 21.28 25.39 5.04 23.68 1,578 

Savanna 41.00 9.03 3.00 7.33 10,044 

Forest 99.35 15.64 3.95 3.98 5,160 

 585 

4.  Discussion  586 

Cerrado is the second-largest source of carbon emissions in Brazil (Metzger 587 

et al. 2019), and hence accurate measurements of AGBt are crucial for boosting 588 

vegetation carbon management, conservation, and restoration initiatives (Bispo et 589 

al., 2020). Our study demonstrates, for the first time, the potential of high-density 590 

UAV lidar sensors and the resultant 3-D point clouds to accurately capture the 591 

highly heterogeneous structure of tropical savanna in Brazil, which is 592 

characterized by the presence of various vegetation formations, including 593 

grassland, savanna, and forest. Thus, it is possible to model the AGBt, which also 594 

accounts for the contribution of small trees, shrubs, and surface vegetation to total 595 

biomass, as opposed to the majority of studies that have focused on only the 596 

woody AGB of the canopy (e.g., Bispo et al., 2020; Zimbres et al., 2020).  597 

 598 

4.1 Including non-woody vegetation in lidar estimations of aboveground 599 

biomass  600 

The lidar-assisted estimation of biomass of non-woody vegetation is 601 

relatively neglected in the scientific literature, despite its large proportional 602 

contribution to global carbon flux from biomass burning (van der Werf et al., 2010; 603 

Poulter et al., 2014; Pugh et al. 2019; Duvert et al., 2020; Lasslop et al., 2020). 604 

Although there are numerous studies regarding the use of lidar to estimate and 605 
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monitor forest structure and AGB in a range of biomes and vegetation types (e.g. 606 

Clark et al., 2011; Hudak et al. 2012; Andersen et al., 2013; Asner and Mascaro, 607 

2014; Silva et al., 2017), there is a scarcity of studies that include the full range of 608 

vegetation formations found in the Cerrado biome. Our results are not truly 609 

comparable to model performances obtained by other studies using lidar for 610 

biomass mapping in tropical savanna ecosystems, because those typically targeted 611 

only woody AGB (e.g. Bispo et al., 2020; Zimbres et al., 2020) as opposed to the 612 

AGBt estimation done in our study. For instance, Levick et al. (2019), using ALS 613 

for assessing habitat structure and woody aboveground carbon (AGC) response to 614 

altered fire regimes in tropical savanna in Australia, were able to calibrate models 615 

and map AGC to the entire experimental site with model performance resulting in 616 

a R2 of 0.82 and RMSE of 7.35 Mg/ha; the absolute RMSE (Mg/ha) would 617 

approximately double in terms of AGB. Bispo et al. (2020), also using ALS derived 618 

top canopy height and cover metrics for estimating only woody AGB, showed 619 

good model performance with R2 of 0.93 and RMSE of 6.74 Mg/ha (13.0%). 620 

Almeida et al. (2019) used the same GatorEye UAV-lidar system presented in this 621 

study, but in a tropical forest ecosystem, and were able map AGB across different 622 

forest successional stages with model performance R2 of 0.80 and RMSE of 24.9 623 

Mg/ha (9.0%), respectively. The fact that the performance of our models was 624 

slightly worse than those presented by these authors can be explained by our 625 

approach to include non-woody vegetation in our estimation of AGBt, not just 626 

AGB stored in trees; although lidar is sensitive to woody canopy structure, its 627 

sensitivity to understory and surface fuel components, particularly the litter layer 628 

at ground level, is diminished, thus contributing to larger estimation errors. For 629 

instance, Bispo et al. (2020) did not include data from grassland formations in their 630 

Cerrado gradient, which is the type of vegetation formation that typically yields 631 

higher errors in studies concurring to our results (Wang et al. 2017; Marselis et al., 632 

2018; Zhang et al. 2018; Madsen et al., 2020). If shrubs and surface vegetation are 633 
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not included in the sample, the resulting models cannot be extrapolated to map 634 

AGB toward grassland areas, which can be quite a representative proportion of the 635 

land in savanna ecosystems like Cerrado (Fig. 8). In turn, our results demonstrate 636 

that the estimation of AGBt is possible at a level of certainty comparable to 637 

estimating AGB from trees alone, which makes worth the extra effort in the 638 

sampling protocol compared to the gain obtained when including a proportionally 639 

relevant component of total vegetation biomass. Given the high importance of 640 

grassland estimation in savanna biomes (Simon et al., 2009), and their importance 641 

to global carbon balances (van der Werf et al., 2010; Poulter et al., 2014; Pugh et al. 642 

2019; Duvert et al., 2020; Lasslop et al., 2020), it is crucial that further research on 643 

lidar estimations of biomass includes non-woody vegetation formations in both 644 

the sampling and modelling of AGBt.  645 

 646 

4.2 Convergence on metrics across sensors, platforms, and savanna vegetation 647 

formations  648 

We were able to identify the best UAV-lidar derived metrics to produce 649 

models that can accurately estimate the distribution of AGBt across the different 650 

vegetation formations, estimate total AGB at plot level, and produce maps at the 651 

landscape level for different regions of the Cerrado. The best model derived by 652 

exhaustive variable selection algorithm uses metrics that represent canopy height 653 

and cover (e.g., H98TH and COV), which concurs with other results for AGB 654 

estimation in tropical ecosystems, including Cerrado (Levick et al. 2019; Bispo et 655 

al., 2020; Zimbres et al., 2020). For instance, Levick et al. 2019 were able to 656 

accurately map woody aboveground carbon (AGC) in tropical savanna in 657 

Australia using only lidar-derived canopy height and cover metrics. Bispo et al. 658 

(2020) used ALS for woody AGB mapping in Cerrado and found that models 659 

calibrated with canopy top height and cover metrics resulted in better 660 

performance. Moreover, lidar-derived top canopy height and cover have been 661 
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shown to be stable metrics at reduced pulse densities (Hensen et al., 2015; Silva et 662 

al., 2017b), which enables the comparability of different surveys and thus the use 663 

of lidar time series (Bater et al., 2011; Hudak et al. 2012; Cao et al., 2016; Zhao et al., 664 

2018; Hu et al. 2019). The scientific literature is clearly converging toward the use 665 

of these metrics, and thus they are already considered as standard ecosystem 666 

morphological traits to measure across multiple biomes and data sources 667 

(Valbuena et al., 2020). Our results show that these are also relevant in gradients 668 

including both forests and grassland ecosystems, which has great global 669 

implications (Simon et al., 2009). This convergence is enabling comparative meta-670 

analyses across different types of 3-D remote sensing methods, to adequately 671 

assess different landscapes consistently (Valbuena et al., 2020). Thus, vegetation 672 

high (Asner and Mascaro, 2014) and cover (Tang et al., 2019) are as relevant to use 673 

for biomass estimation in grassland-dominated biomes as they are in forests.  674 

 675 

4.3 Overcoming challenges in mapping total aboveground tropical savanna 676 

ecosystems 677 

The complex physiognomy of ecosystems found in areas like Cerrado 678 

creates particular challenges to mapping biomass distributions using remote 679 

sensing. For this reason, there is only limited literature regarding the use of remote 680 

sensing to estimate AGBt, as compared to woody AGB estimation in savannas 681 

(Levick et al. 2019; Bispo et al., 2020; Zimbres et al., 2020). Accurate maps of AGBt 682 

can however help to identify the distributions of the different vegetation 683 

formations across the landscape, and their associated uncertainties. Our study thus 684 

serves as a benchmark for further data collection and could enable large scale 685 

availability of baseline data regarding Cerrado biome biomass stores. The accuracy 686 

of AGBt estimation varied across different vegetation formations, with relaatively 687 

greater uncertainty observed in grassland formations. This result may be attribued 688 

to the smaller sample size for grassland and also the limitations of lidar (not just 689 
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UAV platforms) in capturing the 3-D structure for this formation. The high density 690 

of low-lying vegetation in the grassland, which lowers penetration of lidar pulses, 691 

can negatively impact the ability to differentiate vegetation returns from ground 692 

returns (Hopkinson et al. 2004; Streutker et al. 2006), introducing further errors 693 

and increasing the uncertainty. Such complications likely contribute to the 694 

apparent shortage of literature regarding the study of grassland vegetation with 695 

lidar (Hudak et al. 2016). Further research should focus more on including the 696 

grassland areas with a stratified design (Adnan et al. 2021), since grassland areas 697 

are characterized by low AGBt values that may be undersampled in study designs.  698 

 699 

4.4 Wider implications of our findings 700 

The findings of this study, together with further research on this topic, can 701 

assist in the development of more accurate carbon monitoring and integrated fuel 702 

and fire management activities in Cerrado. For example, while developing maps of 703 

broad coverage, UAV-lidar can provide data for calibration and validation of 704 

satellite-based biomass maps, which are increasingly used owing to the 705 

proliferation of open-source platforms. Another critical and real-time application 706 

of UAV-lidar AGB maps are for validating satellite products, such as those from 707 

NASA’s GEDI and ICESat-2 (Ice, Cloud, and land Elevation Satellite 2) missions 708 

(Silva et al., 2021). Consequently, UAV-lidar presents a convenient, relatively low-709 

cost solution to collect data with an extremely high point density, thereby 710 

capturing and describing structural differences in the Cerrado. In tandem, these 711 

allow for the generation of locally highly accurate estimates of total AGB for 712 

specific Cerrado formations. The need for high-resolution assessments to calibrate 713 

and validate satellite-based biomass maps is crucial in the face of the enormous 714 

pressure that local and global changes are exerting on Cerrado. For instance, 715 

employing maps with higher uncertainty in grassland might limit or hinder the 716 

predictive capability of ongoing fire management strategies at Cerrado and 717 
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warrant urgent attention in terms of their implications for practical applications. 718 

Currently, however, there is no better alternative in terms of speed and cost for 719 

large-scale estimation of AGBt in Cerrado, and so it may be the case that the 720 

greater quantities of UAV-lidar data and coverage compared to field 721 

measurements compensate for a slightly higher uncertainty in the predictions, 722 

especially in grassland formations.  723 

 724 

4.5 Future directions 725 

It is expensive and challenging to conduct fieldwork in the Brazilian 726 

Cerrado, and existing field datasets still do not entirely represent the extent and 727 

complexity of the biome. This study has demonstrated UAV-lidar can successfully 728 

describe Cerrado vegetation formations over large areas and has the potential to 729 

dramatically increase the size and accuracy of datasets commonly used to classify 730 

(and misclassify) Cerrado vegetation types in large scale satellites-derived AGB 731 

maps. The development of AGB mapping techniques as demonstrated in this 732 

study will have a strong impact on our ability to map and monitor AGB in the 733 

Cerrado biome, particularly with regards to the often-overlooked surface biomass. 734 

Nonetheless, the observed uncertainty in grassland should be investigated in 735 

depth in future studies for improving AGB mapping accuracy, and for achieving 736 

this goal, we recommend testing the possibility of integrating TLS with UAV-lidar, 737 

as well as evaluating the stand-alone accuracy of TLS techniques (Zimbres et al. 738 

2020). Moreover, with increased study of and field inventories in grassland 739 

formations, we could expand our data repository and increase surface biomass 740 

estimation accuracies; this will also allow forest managers to determine the 741 

minimum number of field plots required for estimating surface biomass in a 742 

satisfactory manner and help optimize field data collection costs. Future work that 743 

uses the workflows and outputs presented in this study to derive large scale, wall-744 

to-wall AGBt maps have potential to greatly contribute to improvements in carbon 745 
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monitoring, and integrated fire and wildfire management. As the accuracy of 746 

remote sensing techniques improves, it may be that this study has provided a 747 

benchmark against which to show improvements in AGBt estimation for 748 

monitoring of carbon and wildfire management. 749 

 750 

5.  Conclusion  751 

In this study, the use of UAV-lidar allowed us to accurately derive different 752 

vegetation metrics from 3-D point clouds to model and estimate total aboveground 753 

biomass at the landscape scale across the Cerrado formations at moderate-754 

resolution. Our methodological approach may be upscaled to larger areas with 755 

success as it covers the main vegetation types of the biome, consisting of a gradient 756 

from grasslands to savannas and forests. Our modeling analysis identified the best 757 

lidar-derived metrics to use to estimate total aboveground biomass, where 758 

dominant vegetation height and canopy cover were the variables that showed the 759 

best model performance. The biomass map and framework presented in this paper 760 

can complement field assessments, and calibrate and validate other methods to 761 

estimate total aboveground biomass based on satellite data, such as GEDI. In this 762 

sense, users may potentially improve the spatial and temporal resolution of 763 

aboveground biomass monitoring in a region, which plays a key role in the global 764 

carbon cycle and where the distribution of total aboveground biomass is still 765 

unquantified. The study findings may support new decision support systems 766 

based on accurate monitoring of aboveground biomass aiming to inform and 767 

improve forest policy responses concerning issues of forest degradation, carbon 768 

emissions, and ecosystem function. Additionally, the outcomes of this research can 769 

support future research to advance understanding of climate-fire interactions and 770 

the mutual feedbacks between changing fire regimes and fuel biomass. 771 

 772 

 773 
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