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Abstract: Individual tree attributes, such as stem volume and biomass, are usually predicted by
using traditional field-derived allometric models. However, these models are derived from data
collected from small areas and lack a level of detail of tree components (e.g., stem, branches, and
leaves). Remote sensing techniques such as the Quantitative Structure Modelling (QSM) applied on
high-density LiDAR data emerge as a promising solution for obtaining extensive and detailed tree
attribute estimates. We used a high-density LiDAR data on board of a Unmanned Aerial Vehicle
(UAV) to evaluate the performance of the QSM approach in estimating field-derived individual tree
attributes such as the diameter at breast height (dbh), tree height (ht), and volume (v), as well as the
stem (SAGB), branch (BAGB), and total (TAGB) aboveground biomass of eucalyptus trees. QSM was
used in two different approaches: (i) using dbh and h derived from QSM and then applied into the
field-based equations for estimation of volume and (ii) deriving tree volume directly from QSM. In
general, all fitted models using the QSM approach were satisfactory, but with a slight tendency of
over-estimation of dbh (9.33%), ht (12.40%), v-QSM1 (26.35%), v-QSM2 (26.66%), TAGB (27.08%),
SAGB (25.57%), and BAGB (20.08%). Non-significant differences were noticed when estimating the
dbh, tree volume, stem, and aboveground biomass. Despite the overestimation, this study indicates
that using the QSM approach to estimate individual tree attributes from UAV-LiDAR is a promising
alternative to support the decision-making process regarding forest management activities, especially
when considering tree architecture and biomass components.
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1. Introduction

Annually, industries and society demand millions of cubic meters of wood [1]. Thus,
the decision-making process regarding forest management activities is crucial to meet
the demand of these industries [2,3]. Forest industries and farmers demand reliable and
accurate information on the availability of different products, such as merchantable volume,
to enhance their profitability [4]. However, the uncertainties about these estimates, due to
the different methods used, are considerable.

Brazil has more than 10 million ha of forest plantations [5] and around 7 million
hectares consist of clonal eucalyptus stands [6]. These plantations are usually focused
on pulp and charcoal production. Thus, no distinction in the log’s size is imposed (i.e.,
sawtimber, pulpwood, and charcoal) [2]. However, recent initiatives have ventured into
diversifying the clonal eucalyptus production outcomes from Brazilian plantations. Hence,
individual-tree-level approaches are needed to provide detailed information regarding tree
architecture and multiple product availabilities [7–10].

Under this scenario, both tree volume and aboveground biomass are essential infor-
mation for planning silvicultural and harvest activities and assessing the environmental
and ecological services from forest stands [11–14]. However, their determination may be
challenging, depending on the extension and access to these areas and their varying ho-
mogeneity levels [15]. Traditionally, tree biomass and volume determination are based on
allometric models [16–18]. Despite their efficiency in estimating tree attributes, these mod-
els fail to provide detailed information concerning different tree components (e.g., stem,
branches, and leaves). In addition, most of these models are limited since they are usually
fitted under very specific site conditions, making them inflexible and inaccurate when used
for different tree species or genotypes, ages, and sizes [19–21]. Remote sensing technologies,
such as light detection and ranging (LiDAR), have emerged to derive three-dimensional
(3D) and detailed information from the forest canopy and its structure [22–24].

Several studies have addressed the applicability of LiDAR—ranging from individual
tree detection (ITD) to assessing uniformity indices and predicting biomass [25–30]. Ter-
restrial laser scanning (TLS), with very high density LiDAR data, has become increasingly
relevant for providing accurate 3D data about trees [31–33]. Thus, it is now possible to
derive several metrics from trees, which are otherwise impractical through direct determi-
nation without destructive tree harvesting [34]. Usually, voxelization procedures [35,36]
or cylinder assembly algorithms are employed for this purpose [37–40]. However, re-
cent studies suggest using quantitative structure modeling (QSM) [41,42], as this method
provides fast and accurate information on different tree components from the TLS point
cloud [15,18,43–48].

Despite the benefits of TLS, operational limitations make it difficult to obtain data for
large areas. TLS data collection in field surveys is a tiring endeavor, taking 3–6 days to
scan 1 hectare in some cases [33]. One disadvantage of UAV LiDAR over TLS is the fact
that tree trunks are much easier to delineate from ground-based data (TLS), especially in
densely wooded areas. As a result, the use of UAV (Unmanned Aerial Vehicle) technologies
has expanded in recent years. A few studies have been developed addressing the use of
UAV-LiDAR to generate tree attribute estimates. Biomass studies in the field are expensive
and time-intensive. Recent studies, such as [49,50], highlighted the potential of using
UAV-LiDAR for assessing individual tree metrics, such as the diameter at breast height,
total height, and volume. However, to the best of our knowledge, no studies have been
conducted to estimate the aboveground biomass and volume for different tree components
using QSM and high-density UAV-LiDAR data. Studies have tested QSM reconstructions
of individual trees using UAV-derived point clouds and concluded that it is a promising
approach for estimating aboveground biomass [14]. However, in that study, photogram-
metry and not LiDAR was used to generate the point cloud. The QSM method uses only
the xyz coordinates of the points to construct the geometric and topological properties of
the trees stored in the models. Therefore, with LiDAR having greater penetration into the
forest interior, generating denser (XYZ) coordinates than photogrammetry, it is expected
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that QSM combined with it will help better explain the biomass. Most related studies
using QSM were based on TLS 3D point clouds. In this study, we aimed to evaluate the
performance of high-density UAV-lidar and the QSM approach for estimating individual
tree attributes, such as diameter at breast height (dbh), total height (ht), and volume (v),
as well as the stem (SAGB), branch (BAGB), and total (TAGB) aboveground biomass in
eucalyptus stands established in a crop–livestock–forest system. Our hypothesis is that the
QSM method can estimate biomass, as well as in the field on high-density UAV-LiDAR data.

2. Materials and Methods

2.1. Study Area

This study used data from a 17 ha eucalyptus plantation (Eucalyptus benthamii
Maiden et Cambage) established in a crop–livestock–forest system—iCLF (Figure 1)—at
age 6 years. Crop–livestock–forest integration (ILPF) is a production strategy that integrates
different production systems, agricultural, livestock, and forestry, within the same area. It
can be used in intercropping, in succession, or in rotation, so that there is mutual benefit for
all activities. The plantation is located in the municipality of Pinhais, Paraná State, southern
Brazil (25°22′38′ ′ S, 49°09′05′ ′ W). According to the Brazilian System of Soil Classification,
study area soils are classified as Haplic Cambisol [51]. This soil order corresponds to
Inceptisol in soil taxonomy [52]. The study area is characterised by a humid subtropical
climate with oceanic climate—Cfb (without a dry season and temperate summer)—with
an annual rainfall of 1550 mm [53]. Additionally, the average elevation is ca. 920 m above
sea level. The initial tree spacing was 2 × 14 m, totaling 357 trees per hectare. The large
spacing is a characteristic of the iCLF.

Figure 1. Location of the study area in Southern Brazil with the UAV-LiDAR 3D point Cloud and the
30 selected sample trees (black points) for QSM application: (a) Detail of the normalized point cloud
of a selected tree.

2.2. Field Data

A total of 30 trees were randomly selected for field sampling. These trees were
randomly selected in order to comprise the stand amplitude regarding dbh (diameter at
1.3 m above the ground) and total tree height (ht) structure. These trees were felled, bucked,
and scaled. On each tree, measurements of the stem were taken at various heights along
the tree trunk. For every section, volume was obtained from the Smalian’s formula (which
involves the average cross-sectional area of the large and small ends times the log length)
(Equation (1)):

v =
g1 + g2

2
∗ l (1)
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where: v = log volume (in m3); g1 = cross-sectional area of the large end (in m2); g1= cross-
sectional area of the small end (in m2); l = log length (in m).

Total aboveground biomass (TAGB) was determined by weighing tree components
separately (stem—SAGB and branches—BAGB) using a 100 g precision dynamometer and
summing up the total AGB per each tree. Samples of 1 kg were collected from each tree
and biomass component for dry matter determination and were oven-dried at 70 °C until
they reached a constant weight

2.3. UAV-LiDAR Data Collection

The UAV-LiDAR data were obtained in September 2019 with the GatorEye system. The
GatorEye comprises DJI Matrice 600 Pro hexacopter capable of 16–22 min flight times for
small areas (<20–30 acres·flight−1 and 10 battery packs) and with a 5 km telemetry/control
range. The GatorEye system has a Phoenix Scout + core with a tactical-grade Novatel STIM
300 IMU and differential GNSS system. After the post-processing of a smooth trajectory
in Novatel Inertial Explorer, the LiDAR point’s absolute precision was within about 5 cm
repeatable [54], with greater relative accuracy between points collected from the same
flight line. The GatorEye system includes a sensor called Velodyne VLP-32c LiDAR puck
sensor [55]. The flying height was 55 m above the ground at a speed of 8 ms−1 and at an
approximate horizontal distance between the adjacent flight lines of 15 m, producing a very
high-density LiDAR point cloud (1400 points per meter squared). The UAV flight lines
provide for redundant coverage in the area (overlap of 90%). Additionally, returns were
limited to those having a range of less than 100 m and a field of view of 120 m.

Lidar Data Processing

The first steps of LiDAR data processing used Lastools functions [56]. High-density
3D points were merged using lasmerge (LasTools) and clipped within the study area using
the lasclip tool (LasTools). Subsequently, lasnoise (LasTools) was applied to identify and
remove spurious returns. The next steps was in R environment [57], where the ground
returns were classified using lasground new; then; the digital terrain model—DTM—was
designed with las2dem (0.5 m resolution). DTM was used to designed the normalized lidar
point clouds (lasheight) and the canopy height model—CHM (0.5 m resolution).

The next step used the CHM and the normalized LiDAR point clouds as inputs for
individual tree detection. The dalponte2016’s ITD algorithm [58,59] was used to delineate
and segment single tree crowns within the 3D point cloud (Figure 2). The Dalponte2016
algorithm finds the maximum locations within a CHM image, representing the treetop, and
then uses a decision algorithm to outline trees’ crowns around the maximum locations. For
this, an LMF was applied over the CHM with a window of 3 m × 3 m, trying to find the
highest point. According to authors in [59], the LMF technique is used with images with
the assumption that the reflectance of a treetop is typically higher at its apex.

Similarly, the LMF assumes that the higher laser elevation point for the same tree
crown consists of its apex. When the LMF is used in a point cloud to deal with this, it
assumes that the highest laser value between the laser strokes of the same tree crown is
the apex. When several pixels present the same value in the CHM, the whole-mass center
of these pixels is considered the tree apex. Thus, these maximum locations express the
top positions of the identified trees. Then, the associated CHM value is extracted to define
the top heights of the trees. In [58], the authors highlight this approach by describing
the following steps: (i) a low-pass filter applied to rasterized CHM to smooth the surface
and reduce the number of local maxima; (ii) define the local maxima using a moving
window (3 × 3 m in this case); a CHM pixel is labeled as local maxima if its value is higher
than all other values in the window, as long as it is higher than some minimum height
above ground; (iii) each local maximum is labeled as an “initial region” around which a
treetop can grow; the heights of the four neighboring pixels are taken from the CHM, and
these pixels are added to the region if their vertical distance of the maximum location is
less than some user-defined percentage of the local maximum height, and less than some
user-defined maximums difference. This procedure is repeated for all cell neighbors now
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included in the region, and so on, until there are no more pixels added to the region; (iv) of
each region that had been identified, the first return cloud points are extracted (having first
removed low elevation points); and (v) a 2D convex hull is applied to these points, and the
resulting polygons become the final individual tree crowns. All steps of the dalponte2016
algorithm were employed using the LidR package in R [57–59].

Figure 2. Diagram of UAV-LiDAR point cloud processing: (a) pre-processing; (b) “.las” normalized
and Canopy Height Model—CHM; (c) Individual Tree Crown Detection; (d) Extract Individual Trees
from CHM; (e) Filters and Noise Removal; (f) Result of TreeQSM.

With trees identified, we performed a random sampling to select 30 trees for further
analysis, and the lasclip tool was applied to cut the normalized LiDAR point clouds to
the trees. Quantitative structure modeling (QSM) was used to assess tree architecture [15].
For this purpose, point clouds containing one tree at the time were delimited. QSM is
a semi-automatic method that builds a tree model from laser scanner point clouds and
consists of a hierarchical collection of cylinders of calculable volume. The QSM algorithm
implemented in the TreeQSM function in MATLAB assumes that most points consist of
stems and branches, and the QSM uses these points to build the cylinders. When removing
phantom points (e.g., noise points from leaves) was necessary, we applied the filtering
function (Equation (2)) in MATLAB R2020b.This filtering formula and the other procedures
of the TreeQSM algorithm (version 2.4.0) are described in detail in the manual [15,46]:

f iltering(P0, r1, n1, d2, r2, n2, Scaling, AllPoints) (2)

where: P0 = unfiltered point cloud; r1 = radius of the balls used in the first filtering (defines
the volume); n1 = minimum number of points in the accepted balls of the first filtering;
d2 = minimum distance between the centers of the balls in the second filtering; r2 = radius
of the balls used in the second filtering; n2 = minimum number of balls in the components
passing the second filtering; Scaling (optional input) = if true, the first filtering threshold n1
is scaled along with the height with average point density (default value false); AllPoints
(optional input) = if true, performs the first filtering process for every point (default value
false). Point cloud filtering aims to eliminate points based on the distance threshold between
neighboring points, intensity value, or density of points along the surface of the stem.

Then, the variables of the model were established: PatchDiam-parameter (pd)—the
average size of the cover sets is controlled by the minimum patch diameter (0.2) and the
maximum (0.8); the branching order of the QSM has been set to add a level to each branch
node. QSM partitioned the point cloud into small connected surface patches and used them
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to reconstruct each tree segment. Then, cylinders were created and fitted into the segments,
creating a 3-dimensional reconstitution of the tree structure [37,43,60,61]. From the 3-
dimensional reconstitution of the tree were extracted the metrics of dbh, total tree height,
volume, and branch structure. Two different approaches were evaluated when predicting
tree volume (QSM1 and QSM2). The QSM1 approach was built using dbh and ht derived
from TreeQSM and then applied into the field-based equations for estimation volume. On
the other hand, QSM2 consisted of deriving tree volume directly from QSM cylinders.

2.4. Data Analysis

To estimate tree volume and biomass using field-based data, we fitted linear regression
models [62] using Equation (3). In this step, the lm() function within the software R
was used:

y = β0 + β1(dbh2ht) (3)

where: y = estimated tree attribute (tree volume (in m3), aboveground biomass, or compo-
nent biomass (in kg)); dbh = diameter 1.3 m above the ground (in cm); ht = total tree height
(in m).

The dbh and ht derived from QSM were used to estimate tree volume and biomass
in the compartments (TAGB, SABG, and BAGB). The performance of the fitted equations
when predicting tree attributes using QSM-derived metrics were evaluated by assessing the
relative root mean square error (rRMSE%), Bias (%), and the coefficient of determination
(R2). Additionally, the paired Mann–Whitney (MW) test examined significant differences
between QSM-derived and field-based estimates. MW examines the differences between
medians and shape and spread distribution. The p-value is contrasted against the sig-
nificance level to determine whether the median’s difference in median values. The null
hypothesis (H0) is rejected when the p-value ≤ α (α = 0.05), indicating significant differences
between observed and estimated values. Otherwise, H0 is accepted (when p-value > α),
suggesting non-significant differences.

Graphical analyses with a scatter plot with the line of equality (1:1 lines) were used to
assess the behavior of the estimates, contrasting predicted and observed values from field-
based data, as well as QSM1 and QSM2. The scatter plot with the equality line (1:1 lines)
highlights how close H0: α = 0 (intercept) and β approaches 1 (slope).

3. Results

3.1. Field-Based Metrics and Allometric Equations

All models displayed significant fitted coefficients (p-values) when predicting tree
volume, TAGB, SAGB, and BAGB. Figure 3 displays the fitted model’s behavior, indicating
the traditional modeling approach’s satisfactory performance based on field data (Table 1).
In general, all fitted equations presented satisfactory goodness-of-fit statistics, with R²
ranging from 0.96 to 0.98, and the rRMSE ranging from 8.76 to 40.72%. The correlation (r)
between predicted and observed values ranged from 0.86 to 0.99 (Figure 3).

Table 1. Fitted coefficients and their standard errors when predicting tree volume (v), total above-
ground biomass (TAGB), stem biomass (SAGB), and branch biomass (BAGB).

Variable Mean SD Min Max
Fitted Coefficients (±SE)

R2 RMSE rRMSE (%)
α β

Volume 0.73 0.39 0.08 1.50 5.7 × 10 −2 (2.2 × 10−2) 3.1 × 10−5 (8.7 × 10−7) 0.97 0.058 8.76
TAGB 406.32 227.35 50.74 867.63 23.52 (18.1) 0.176 (7.22 × 10−4) 0.98 52.8 13.02
SAGB 318.22 170.76 34.80 688.31 33.9 (16.06) 0.0131 (6.4 × 10−4) 0.96 47.02 14.77
BAGB 63.65 50.69 3.25 192.94 −12.11 (8.85) 0.0035 (3.5 × 10−4) 0.96 25.91 40.72

Note: SD—standard deviation; Min—minimum value; Max—maximum value; R2—coefficient of
determination; RMSE—root mean squared error; rRMSE—relative root mean squared error (in %); all
other variables were previously defined.
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Figure 3. Relationship between observed and predicted tree volume (v) (a); total aboveground
biomass (TAGB) (b); stem biomass (SAGB) (c); and branch biomass (BAGB) (d).

3.2. QSM-Derived Tree Metrics

3.2.1. Tree dbh and Total Height

The diameter at 1.3 m above the ground (dbh) and tree height (ht) for the 30 individual
trees were estimated through the QSM approach. In general, both the dbh (Bias = 1.22 cm;
and rRMSE = 9.33%) and ht (Bias = 1.85 m; and rRMSE = 12.40%) estimates showed
satisfactory performance (i.e., rRMSE ≤ 15%). The Pearson correlation between the field-
based and QSM-derived values were r = 0.6 5 (dbh) and r = 0.85 (ht), respectively. Both
scatter plots with the line of equality (1:1 lines) presented similar patterns, in which we
noticed a slight bias of overestimation for larger values (Figure 4). The Mann–Whitney test
indicated a non-significant difference between QSM-derived and field-based data regarding
dbh values (p-value = 0.251). Meanwhile, ht estimates presented higher bias (9.33%) when
compared to dbh. The QSM approach tends to overestimate tree height, regardless of
tree size. Other methods of height estimation could have been tested, for example, rescue
directly from the CHM. Since the paper wished to find out how the QSM algorithm would
perform, no other methods were tested. We noticed that more than 80% of tree heights
were overestimated (Figure 4b), resulting in significant differences by the Mann–Whitney
test (p-value ≤ 0.05) (Table 2). Although the correlations of LiDAR height estimation and
field data are higher in the literature, in this work, the estimation was performed by the
QSM algorithm.
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Figure 4. Relationship between QSM-derived and field-based diameter at breast height (dbh) (a) and
total tree height (ht) (b), where observed data are measured in the field.

Table 2. Mann–Whitney test (95% probability) for QSM-derived tree dbh, total height (ht), volume
(v), and biomass (TAGB, SAGB, and BAGB).

Metric Mann p-Value

dbh (observed and QSM-derived) 372 0.251
ht (observed and QSM-derived) 258 <0.001

TAGB (observed and QSM-derived) 316 0.051
SAGB (observed and QSM-derived) 316 0.051
BAGB (observed and QSM-derived) 316 0.048

v (observed and QSM1-derived) 316 0.051
v (observed and QSM2-derived) 335 0.092

3.2.2. Stem Volume

Tree volume estimates through QSM1 and QSM2 resulted in similar patterns, in which
the rRMSE ranged from 26.35% (QSM1) to 26.66% (QSM2). In both cases, we noticed
a slight tendency of overestimation, especially for larger trees (Figure 5). The QSM1
approach consisted of deriving both dbh and total tree height (ht) and applying them into
the fitted equations from Section 3.1, while the QSM2 derived the tree volume directly
from point cloud cylinders. In general, QSM1 presented smaller errors for larger trees
when compared to QSM2. Despite higher relationship between QSM1-derived and field-
based values (r = 0.88), most values were placed under the 1:1 line, resulting in larger bias
(Bias = 0.12 m3, rRMSE% = 17.87%). The Mann–Whitney test, however, indicated non-
significant differences between individual tree volume derived from TreeQSM, regardless
of QSM approach (i.e., QSM1 p-value = 0.051, and QSM2 p-value = 0.092). Despite similar
rRMSE% values, the lower bias and higher p-value suggested the superiority of QSM2.

To illustrate the overall performance of the QSM in predicting tree attributes, we
displayed two point clouds representing the tree architecture (Figure 6). In the first case,
we noticed a higher density of points, in which the volume estimate reached a small error
(10.9%) through QSM2 (Figure 6a). In contrast, a cloud of points with lower density made
it challenging to examine tree architecture (Figure 6b). As a result, the error in estimating
tree volume was higher (25.1%) in this case.
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Figure 5. Relationship between individual field-based and QSM-derived tree volume from QSM1
(a) and QSM2 (b).

Figure 6. Contrasting density of points in the representation of tree architecture: (a) Example of a
tree with satisfactory point density; (b) Example of a tree with lower point density. (1) Tree point
cloud; (2) Structure model of the tree; (3) Automatically reconstructed tree model.
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3.2.3. Tree Biomass

Figure 7 displays the overall pattern of the QSM approach when predicting tree
biomass (TAGB, SAGB, and BAGB). In general, all biomass estimates presented a similar
behavior, in which we noticed a tendency of overestimation for larger trees. This pattern
displaced the scatter plot 1:1 line of equality and resulted in positive biases. Despite this,
high correlation coefficients were observed (r ranging from 0.87 to 0.88). The rRMSE
ranged from 20.08% (BAGB) to 27.08% (TAGB), and non-significant differences were high-
lighted by the Mann–Whitney test (TAGB p-value = 0.051, SAGB p-value = 0.051, and
BAGB p-value = 0.048).

The QSM approach also presented an overestimation tendency when deriving both
the dbh and ht (see Section 3.2.1).

Figure 7. Relationship between field-observed and QSM-derived biomass estimates: (a) Individual
tree TAGB (kg); (b) Individual tree SAGB (kg); (c) Individual tree BAGB (kg).

4. Discussion

The increasing demand for timber implies the necessity of fast and reliable meth-
ods capable of providing individual-tree and stand-level attributes [63]. Data collection
based on traditional methods (field-based) is costly and laborious [64], especially as it
requires harvesting trees to fit allometric equations and measure trees in plots for infer-
ences. Thus, remote sensing approaches, such as LiDAR, have emerged, as they increase
data collection and allow assessment at different levels of detail [65,66]. The aerial LiDAR
approach is commonly used for large-scale surveys, e.g., [67], from which it is possible to
derive several pieces of information regarding forest canopy, such as the Canopy Height
Profile—CHP [68]. However, the low point density causes many limitations in ALS appli-
cations for the level of individual trees [49,65–68].

In contrast, the TLS system is frequently used for assessing individual trees’ structure
and architecture [69,70]. The TLS approach provides a higher density of points, which
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allows for a 3D characterization. However, TLS has operational limitations regarding data
collection, as it requires scanning from different positions to ensure accurate characteriza-
tion [71–74]. Hence, UAV-LiDAR technology has expanded in recent years, as it combines
high density and fast data collection [75]. The use of UAV-LiDAR for assessing individual
tree structure is still a novelty [14], especially using the QSM approach. The QSM allows
the assessment of different tree components, such as the stem and branch structure.

For the first time, in this study, we examined the performance of QSM using UAV-
LiDAR data in predicting individual attributes of eucalyptus trees in a crop–livestock–forest
system. Eucalyptus plantations in crop–livestock–forest systems are established in different
conditions than most eucalyptus plantations in Brazil [76]. In our case, stand density is quite
lower, promoting a more complex branch structure for canopy closure. Thus, trees with
larger light interception areas and, consequently, greater solar radiation use efficiency tend
to have a more complex crown structure. This fact may justify the challenging assessment
of some individual attributes (Figures 4, 5 and 7).

Tree height measurement is difficult in some cases [77]. In addition to the operator’s
experience, environmental and stand conditions can lead to gross errors in field surveys. In
addition, several studies have reported the challenging assessment of crown-level metrics
even in field-based surveys, resulting in higher errors when predicting crown or branch
biomass than those found for tree volume or stem biomass [78]. Despite this, the QSM
approach performed well when deriving most of the individual tree attributes. Errors
ranged from 9.33 to 12.40% for QSM-derived tree dbh and total tree height (Figure 4). A
slight tendency of overestimation and significant differences in total tree height estimates
were noticed. We believe that employing both QSM-derived dbh and total tree height
as input in allometric equations may explain the same pattern in volume and biomass
estimates (Figures 5 and 7). In a similar study [14], the authors evaluated the performance
of the QSM approach using UAV-LiDAR data. These authors noticed significant differences
when deriving tree dbh in addition to errors larger than 49 percent when estimating the
aboveground biomass.

There is a lack of studies addressing the biomass estimation for different tree com-
ponents. The QSM approach still has limitations in defining and segmenting cylinders
which might lead to the overestimation of tree attributes. In addition, gaps along the tree
profile can hinder an accurate assessment of tree structure. We noticed that some trees
displayed a lower density of points, resulting in higher errors (Figure 6). Trees located
close to stand edges usually tend to present a lower density of points due to the flight
path. In this sense, proper flight planning is crucial for ensuring a sufficient density of
points for all trees within the stand. Despite the lower density of points in comparison with
point clouds collected using TLS, the UAV technology allows the UAV-LiDAR sensor’s
repeated scanning without exhaustive data collection. Other factors may influence the
QSM’s accuracy, such as the stand age (influencing stem profile and canopy closure), land
slope, and scanning angle [37,46,79,80].

These results suggest that accurate estimates of individual tree attributes (dbh and ht)
are crucial for reaching reliable biomass estimates.

To our knowledge, this study is the first initiative that addresses the use of high-
density UAV-LiDAR and (integrated) QSM method to assess the biomass of different tree
components. Reliable assessments of branch structure are essential to assist the decision-
making process regarding silvicultural treatments. Eucalyptus plantations established in
crop–livestock–forest systems are usually conducted in longer rotations than those focused
on pulp production. Hence, it is possible to increase forest profitability by scheduling
pruning and thinning interventions. The use of remote sensing tools such as UAV-LiDAR
technology can reduce monitoring costs and data collection time.

5. Conclusions

This study demonstrated the innovative potential of high-density UAV-LiDAR and
the QSM approach in deriving individual attributes of eucalyptus trees established in an
iCLF system. Despite the overestimation bias, the QSM-derived volume and aboveground
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biomass showed non-significant differences compared to field-based data, suggesting the
potential of UAV-LiDAR for the non-destructive assessment of tree biomass. Because of this
fact, the QSM approach can be used in biomass studies now with high-density UAV-LiDAR
data. This fact enables greater scope and area for these studies. The combination of high-
density UAV-LiDAR and the QSM approach can help forest monitoring and reduce the cost
and time of large-scale biomass estimation and volume forecasting. Future studies should
be conducted to address the limitations and influencing factors in QSM-derived metrics
accuracy. Future studies are necessary to suggest alternatives to increase the accuracy of
the QSM-derived metrics using UAV-LiDAR data. Furthermore, we suggest the assessment
of other metrics, such as the crown length and crown ratio, which can be used as auxiliary
variables in allometric equations and improve accuracy.
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